SUMMARYPurpose: To validate the use of 18F-fluorodeoxyglucosepositron emission tomography/magnetic resonance imaging (FDG-PET/MRI) coregistration for epileptogenic zone detection in children with MRI nonlesional refractory epilepsy and to assess its ability to guide a second interpretation of the MRI studies. Methods: Thirty-one children with refractory epilepsy whose MRI results were nonlesional were included prospectively. All patients underwent presurgical evaluation following the standard protocol of our epilepsy unit, which included FDG-PET and FDG-PET/MRI coregistration. Cerebral areas of decreased uptake in PET and PET/MRI fusion images were compared visually and then contrasted with presumed epileptogenic zone localization, which had been obtained from other clinical data. A second interpretation of MRI studies was carried out, focusing on the exact anatomic region in which hypometabolism was located in FDG-PET/MRI fusion images.Key Findings: Both FDG-PET and FDG-PET/MRI detected hypometabolism in 67.8% of patients, with good concordance on a subject basis and on the cerebral region involved (j statistic = 0.83 and 0.79, respectively). Hypometabolism detected by single PET, as well as by PET/MRI fusion images, was located in the same hemisphere, as indicated by electroclinical data in 58% of patients, and at the same place in 39% of cases. Of the patients who showed hypometabolism on PET/MRI, 43% also experienced changes in the guided second MRI interpretation, from nonlesional to subtlelesional. Significance: PET/MRI coregistration is an imaging variant that is at least as accurate as PET alone in detecting epileptogenic zone in pediatric nonlesional patients, and can guide a second look at MRI studies previously reported as nonlesional, turning a meaningful percentage into subtle-lesional.
We assessed the outcome of patients with drug resistant epilepsy and neuronal antibodies who underwent epilepsy surgery. Retrospective study, information collected with a questionnaire sent to epilepsy surgery centers. Thirteen patients identified, with antibodies to GAD (8), Ma2 (2), Hu (1), LGI1 (1) or CASPR2 (1). Mean age at seizure onset: 23 years. Five patients had an encephalitic phase. Three had testicular tumors and five had autoimmune diseases. All had drug resistant temporal lobe epilepsy (median: 20 seizures/month). MRI showed unilateral temporal lobe abnormalities (mainly hippocampal sclerosis) in 9 patients, bilateral abnormalities in 3, and was normal in 1. Surgical procedures included anteromesial temporal lobectomy (10 patients), selective amygdalohippocampectomy (1), temporal pole resection (1) and radiofrequency ablation of mesial structures (1). Perivascular lymphocytic infiltrates were seen in 7/12 patients. One year outcome available in all patients, at 3 years in 9. At last visit 5/13 patients (38.5%) (with Ma2, Hu, LGI1, and 2 GAD antibodies) were in Engel`s classes I or II. Epilepsy surgery may be an option for patients with drug resistant seizures associated with neuronal antibodies. Outcome seems to be worse than that expected in other etiologies, even in the presence of unilateral HS. Intracranial EEG may be required in some patients.
Perampanel caused clinically meaningful improvements in patients with drug-resistant myoclonic seizures. It was generally well tolerated, but psychiatric and neurological side effects sometimes required follow-up and dose reduction.
A precise assessment of the drug-resistant epileptic pediatric population for surgical candidacy is often challenging, and to date there are no evidence-based guidelines for presurgical identification of the epileptogenic zone. To evaluate the usefulness of radionuclide imaging techniques for presurgical evaluation of epileptic pediatric patients, we compared the results of video-electroencephalography (EEG), brain MR imaging, interictal SPECT, ictal SPECT, subtraction ictal SPECT coregistered to MR imaging (SISCOM), and interictal PET with 18 F-FDG. Methods: Fifty-four children with drug-resistant epilepsy who had undergone video-EEG monitoring, brain MR imaging, interictal and ictal brain perfusion SPECT, SISCOM, and 18 F-FDG PET were included in this study. All abnormal findings revealed by these neuroimaging techniques were compared with the presumed location of the epileptogenic zone (PEZ) as determined by video-EEG and clinical data. The proportion of localizing studies for each technique was statistically compared. In the 18 patients who underwent resective brain surgery, neuroimaging results were compared with histopathology results and surgical outcome. Results: SISCOM and 18 F-FDG PET concordance with the PEZ was significantly higher than MR imaging (P , 0.05). MR imaging showed localizing results in 21 of 54 cases (39%), SISCOM in 36 of 54 cases (67%), and 18 F-FDG PET in 31 of 54 cases (57%). If we consider SISCOM and 18 F-FDG PET results together, nuclear medicine imaging techniques showed coinciding video-EEG results in 76% of patients (41/54). In those cases in which MR imaging failed to identify any epileptogenic lesion (61% [33/54]), SISCOM or 18 F-FDG PET findings matched PEZ in 67% (22/33) of cases. Conclusion: SISCOM and 18 F-FDG PET provide complementary presurgical information that matched video-EEG results and clinical data in three fourths of our sample. SISCOM was particularly useful in those cases in which MR imaging findings were abnormal but no epileptogenic lesion was identified. Radionuclide imaging techniques are both useful and reliable, extending the possibility of surgical treatment to patients who may have been discouraged without a nuclear medicine approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.