This paper deals with the market-bidding problem of a cluster of price-responsive consumers of electricity. We develop an inverse optimization scheme that, recast as a bilevel programming problem, uses price-consumption data to estimate the complex market bid that best captures the price-response of the cluster. The complex market bid is defined as a series of marginal utility functions plus some constraints on demand, such as maximum pick-up and drop-off rates. The proposed modeling approach also leverages information on exogenous factors that may influence the consumption behavior of the cluster, e.g., weather conditions and calendar effects. We test the proposed methodology for a particular application: forecasting the power consumption of a small aggregation of households that took part in the Olympic Peninsula project. Results show that the pricesensitive consumption of the cluster of flexible loads can be largely captured in the form of a complex market bid, so that this could be ultimately used for the cluster to participate in the wholesale electricity market.
In this paper we seek to optimally operate a retailer that, on one side, aggregates a group of price-responsive loads and on the other, submits block-wise demand bids to the day-ahead and real-time markets. Such a retailer/aggregator needs to tackle uncertainty both in customer behavior and wholesale electricity markets. The goal in our design is to maximize the profit for the retailer/aggregator. We derive closed-form solutions for the risk-neutral case and also provide a stochastic optimization framework to efficiently analyze the risk-averse case. In the latter, the price-responsiveness of the load is modeled by means of a nonparametric analysis of experimental random scenarios, allowing for the response model to be non-linear. The price-responsive load models are derived based on the Olympic Peninsula experiment load elasticity data. We benchmark the proposed method using data from the California ISO wholesale electricity market.
Abstract-We consider the problem of forecasting the aggregate demand of a pool of price-responsive consumers of electricity. The price-response of the aggregation is modeled by an optimization problem that is characterized by a set of marginal utility curves and minimum and maximum power consumption limits. The task of estimating these parameters is addressed using a generalized inverse optimization scheme that, in turn, requires solving a nonconvex mathematical program. We introduce a solution method that overcomes the nonconvexities by solving instead two linear problems with a penalty term, which is statistically adjusted by using a cross-validation algorithm. The proposed methodology is data-driven and leverages information from regressors, such as time and weather variables, to account for changes in the parameter estimates. The power load of a group of heating, ventilation, and air conditioning systems in buildings is simulated, and the results show that the aggregate demand of the group can be successfully captured by the proposed model, making it suitable for short-term forecasting purposes.Index Terms-Inverse optimization, load forecasting, smart grid, demand response.
NOTATIONThe notation used throughout the paper is stated below for quick reference. Other symbols are defined as required.
A. Indexes tTime period, ranging from 1 to T . bMarginal utility block, ranging from 1 to B. r Regressor, ranging from 1 to R.
B. Decision variablesx b,t Load from energy block b and time t. P t Lower bound for electricity consumption at time t. P tUpper bound for electricity consumption at time t. u b,t Marginal utility of load block b at time t. µ Intercept for the lower load-consumption bound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.