Sellanes, J., Quiroga, E., and Neira, C. 2008. Megafauna community structure and trophic relationships at the recently discovered Concepción Methane Seep Area, Chile, ∼36°S. – ICES Journal of Marine Science, 65: 1102–1111. The fauna, community composition, and trophic support of the newly discovered Concepción Methane Seep Area (CMSA) are compared with those at a nearby non-seep control. The assemblage of chemosymbiotic bivalves is defined by eight species, including the families Lucinidae, Thyasiridae, Solemyidae, and Vesicomyidae. Seep polychaetes are represented by Lamellibrachia sp. and two commensal species of the vesicomyid Calyptogena gallardoi. Although taxonomic analysis is still under way, most of the chemosymbiotic species seem to be endemics. The CMSA is a hotspot for non-seep benthic megafauna too; 101 taxa were present, but most of them are colonists or vagrants (i.e. not endemics of methane seeps). Isotope analysis supported the belief that non-symbiont-bearing species utilize photosynthetically fixed carbon, because they were isotopically distinct from the chemosymbiotic bivalve species present. It is our opinion that, at this site, which underlies one of the most productive coastal upwelling regions of the world, spatial heterogeneity and the availability of hard substratum, generated by the presence of authigenic carbonate crusts, are more important factors in attracting non-seep fauna than the availability of locally produced chemosynthetic food.
A study off Concepción, central Chile, during the 1997/1998 El Niño (EN) revealed that the concentration of dissolved oxygen and the organic content and quality of the sediment control the vertical distribution of macrofauna in the sediment and bioturbation potential. The study area, characterized by organic-rich, silty sediments, lies within the most intense upwelling center off the coast of Chile, and is subject to the seasonal influx of hypoxic subsurface waters. Five stations (28 to 120 m depth) were sampled seasonally. The vertical distribution and integrated biomass and abundance of macrofauna (> 0.5 mm) were determined, as well as the dissolved oxygen content of the bottom water (BWDO) and sediment parameters such as total organic carbon (TOC), the C/N ratio, sulphide content, chl a content, and the thickness of the oxidized zone. Chl a proved to be a good indicator of fresh (highquality) organic matter. Major components contributing to variation in the macrofauna feeding guilds, bioturbation categories, and their vertical position in the sediment were: (1) the relative bioturbation potential (contribution of bioturbating taxa to the assemblage) and (2) the vertical distribution and ratio of surface-to subsurface deposit-feeders. Higher levels of BWDO and a lower quality of organic matter at the sediment surface tended to provide better conditions for potentially strong bioturbators, while lower BWDO levels and higher-quality organic matter were accompanied by the dominance of tube-dwelling, surface-defecating (and hence weakly bioturbating) species. Higher TOC levels and lower-quality organic matter at the surface resulted in deeper vertical distributions of animals and a higher relative abundance of subsurface deposit-feeders. During the study period, BWDO levels increased, while the total organic carbon and the quality of organic matter decreased. These conditions encouraged the vertical penetration of macrofauna into the sediment column and the relatively larger contribution of stronger bioturbators to the assemblage. The most drastic changes in faunal lifestyles and vertical distribution during the 1997/1998 EN were observed within the Bay of Concepción, an area usually characterized by sulphidic sediments under the conditions of severe seasonal hypoxia or anoxia obtaining during 'normal' (i.e. non-EN) years; and in the deepest shelf site, which usually experiences permanent hypoxia because of the influence of the 'oxygen minimum zone'.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.