Hedgehog (Hh) moves from the producing cells to regulate the growth and development of distant cells in a variety of tissues. Here, we have investigated the mechanism of Hh release from the producing cells to form a morphogenetic gradient in the Drosophila wing imaginal disk epithelium. We describe that Hh reaches both apical and basolateral plasma membranes, but the apical Hh is subsequently internalized in the producing cells and routed to the basolateral surface, where Hh is released to form a longrange gradient. Functional analysis of the 12-transmembrane protein Dispatched, the glypican Dally-like (Dlp) protein, and the Iglike and FNNIII domains of protein Interference Hh (Ihog) revealed that Dispatched could be involved in the regulation of vesicular trafficking necessary for basolateral release of Hh, Dlp, and Ihog. We also show that Dlp is needed in Hh-producing cells to allow for Hh release and that Ihog, which has been previously described as an Hh coreceptor, anchors Hh to the basolateral part of the disk epithelium.
The Hedgehog (Hh) family of morphogenetic proteins has important instructional roles in metazoan development and human diseases. Lipid modified Hh is able to migrate to and program cells far away from its site of production despite being associated with membranes. To investigate the Hh spreading mechanism, we characterized Shifted (Shf) as a component in the Drosophila Hh pathway. We show that Shf is the ortholog of the human Wnt inhibitory factor (WIF), a secreted antagonist of the Wingless pathway. In contrast, Shf is required for Hh stability and for lipid-modified Hh diffusion. Shf colocalizes with Hh in the extracellular matrix and interacts with the heparan sulfate proteoglycans (HSPG), leading us to suggest that Shf could provide HSPG specificity for Hh. We also show that human WIF inhibits Wg signaling in Drosophila without affecting the Hh pathway, indicating that different WIF family members might have divergent functions in each pathway.
The prospects of achieving regeneration in the central nervous system (CNS) have changed, as most recent findings indicate that several species, including humans, can produce neurons in adulthood. Studies targeting this property may be considered as potential therapeutic strategies to respond to injury or the effects of demyelinating diseases in the CNS. While CNS trauma may interrupt the axonal tracts that connect neurons with their targets, some neurons remain alive, as seen in optic nerve and spinal cord (SC) injuries (SCIs). The devastating consequences of SCIs are due to the immediate and significant disruption of the ascending and descending spinal pathways, which result in varying degrees of motor and sensory impairment. Recent therapeutic studies for SCI have focused on cell transplantation in animal models, using cells capable of inducing axon regeneration like Schwann cells (SchCs), astrocytes, genetically modified fibroblasts and olfactory ensheathing glia cells (OECs). Nevertheless, and despite the improvements in such cell-based therapeutic strategies, there is still little information regarding the mechanisms underlying the success of transplantation and regarding any secondary effects. Therefore, further studies are needed to clarify these issues. In this review, we highlight the properties of OECs that make them suitable to achieve neuroplasticity/neuroregeneration in SCI. OECs can interact with the glial scar, stimulate angiogenesis, axon outgrowth and remyelination, improving functional outcomes following lesion. Furthermore, we present evidence of the utility of cell therapy with OECs to treat SCI, both from animal models and clinical studies performed on SCI patients, providing promising results for future treatments.
The development of the central nervous system in Drosophila is initiated by the segregation of neuroblasts, the neural progenitors, from the embryonic neuroectoderm. This process is guided by at least two classes of genes: the achaete‐scute complex (AS‐C) proneural genes and the neurogenic genes. It has been known for some time that loss‐of‐function mutations in the AS‐C result in neural hypoplasia and the first observed defect is failure of segregation of a fraction of neuroblasts. Loss‐of‐function mutations at the ventral nervous system defective (vnd) locus are known to lead to similar phenotypic defects in early neurogenesis. More recently, the vnd locus has been implicated in the regulation of the proneural AS‐C genes and the neurogenic genes of the Enhancer of split complex. In this paper we report the identification of a transcript associated with the vnd locus, the transcript distribution in embryogenesis, which is compatible with the nervous system mutant phenotypes described for this gene, and that the protein product is a member of the NK‐2 homeodomain family. We discuss these findings within the framework of early Drosophila neurogenesis and the known phenotypes associated with the vnd locus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.