Carbohydrate and fat are the main substrates utilized during prolonged endurance-type exercise. The relative contribution of each is determined primarily by the intensity and duration of exercise, along with individual training and nutritional status. During moderate- to high-intensity exercise, carbohydrate represents the main substrate source. Because endogenous carbohydrate stores (primarily in liver and muscle) are relatively small, endurance-type exercise performance/capacity is often limited by endogenous carbohydrate availability. Much exercise metabolism research to date has focused on muscle glycogen utilization, with little attention paid to the contribution of liver glycogen. (13)C magnetic resonance spectroscopy permits direct, noninvasive measurements of liver glycogen content and has increased understanding of the relevance of liver glycogen during exercise. In contrast to muscle, endurance-trained athletes do not exhibit elevated basal liver glycogen concentrations. However, there is evidence that liver glycogenolysis may be lower in endurance-trained athletes compared with untrained controls during moderate- to high-intensity exercise. Therefore, liver glycogen sparing in an endurance-trained state may account partly for training-induced performance/capacity adaptations during prolonged (>90 min) exercise. Ingestion of carbohydrate at a relatively high rate (>1.5 g/min) can prevent liver glycogen depletion during moderate-intensity exercise independent of the type of carbohydrate (e.g., glucose vs. sucrose) ingested. To minimize gastrointestinal discomfort, it is recommended to ingest specific combinations or types of carbohydrates (glucose plus fructose and/or sucrose). By coingesting glucose with either galactose or fructose, postexercise liver glycogen repletion rates can be doubled. There are currently no guidelines for carbohydrate ingestion to maximize liver glycogen repletion.
The present study examined the impact of breakfast and exercise on postprandial metabolism, appetite and macronutrient balance. A sample of twelve (blood variables n 11) physically active males completed four trials in a randomised, crossover design comprising a continued overnight fast followed by: (1) rest without breakfast (FR); (2) exercise without breakfast (FE); (3) breakfast consumption (1859 kJ) followed by rest (BR); (4) breakfast consumption followed by exercise (BE). Exercise was continuous, moderate-intensity running (expending approximately 2·9 MJ of energy). The equivalent time was spent sitting during resting trials. A test drink (1500 kJ) was ingested on all trials followed 90 min later by an ad libitum lunch. The difference between the BR and FR trials in blood glucose time-averaged AUC following test drink consumption approached significance (BR: 4·33 (SEM 0·14) v. FR: 4·75 (SEM 0·16) mmol/l; P¼ 0·08); but it was not different between FR and FE (FE: 4·77 (SEM 0·14) mmol/l; P¼ 0·65); and was greater in BE (BE: 4·97 (SEM 0·13) mmol/l) v. BR (P¼0·012). Appetite following the test drink was reduced in BR v. FR (P¼0·006) and in BE v. FE (P¼ 0·029). Following lunch, the most positive energy balance was observed in BR and least positive in FE. Regardless of breakfast, acute exercise produced a less positive energy balance following ad libitum lunch consumption. Energy and fat balance is further reduced with breakfast omission. Breakfast improved the overall appetite responses to foods consumed later in the day, but abrogated the appetite-suppressive effect of exercise.Key words: Appetite: Fasted state: Glycaemia: Fat oxidation Regular breakfast consumption has been inversely associated with BMI (1) , yet it is not clear whether this association is due to differences in energy expenditure, metabolism or energy intake. Although the ostensible benefits of regular breakfast consumption could be due to improved diet composition with breakfast cereals (1) , rather than meal pattern per se, acute consumption of breakfast can enhance glucose tolerance, insulin sensitivity and subjective and physiological satiety responses to a test drink (2) .A recent position statement concluded that further research is required in regular exercisers with regards to meal pattern, metabolism and appetite regulation (3) , as research in exercising individuals in this area is sparse. However, this population do use diet/exercise strategies, such as training in the fasted state, to control body fat/mass and improve metabolic adaptations to training (4) . Exercise attenuates adverse dietary outcomes such as fat-induced glucose intolerance (5) , and the nutritional state in which exercise is performed can modulate the magnitude of these improvements (5) . Exercise in the fasted state results in a greater reliance on fat as a substrate (6) and has led to its use as a tool to reduce body fat by athletes (4) . Training in the fasted state also leads to enhanced fat transporter protein mRNA content (5) , mitochondrial enzyme a...
Intermittent fasting may impart metabolic benefits independent of energy balance by initiating fasting-mediated mechanisms. This randomized controlled trial examined 24-hour fasting with 150% energy intake on alternate days for 3 weeks in lean, healthy individuals (0:150; n = 12). Control groups involved a matched degree of energy restriction applied continuously without fasting (75% energy intake daily; 75:75; n = 12) or a matched pattern of fasting without net energy restriction (200% energy intake on alternate days; 0:200; n = 12). Primary outcomes were body composition, components of energy balance, and postprandial metabolism. Daily energy restriction (75:75) reduced body mass (−1.91 ± 0.99 kilograms) almost entirely due to fat loss (−1.75 ± 0.79 kilograms). Restricting energy intake via fasting (0:150) also decreased body mass (−1.60 ± 1.06 kilograms; P = 0.46 versus 75:75) but with attenuated reductions in body fat (−0.74 ± 1.32 kilograms; P = 0.01 versus 75:75), whereas fasting without energy restriction (0:200) did not significantly reduce either body mass (−0.52 ± 1.09 kilograms; P ≤ 0.04 versus 75:75 and 0:150) or fat mass (−0.12 ± 0.68 kilograms; P ≤ 0.05 versus 75:75 and 0:150). Postprandial indices of cardiometabolic health and gut hormones, along with the expression of key genes in subcutaneous adipose tissue, were not statistically different between groups (P > 0.05). Alternate-day fasting less effectively reduces body fat mass than a matched degree of daily energy restriction and without evidence of fasting-specific effects on metabolic regulation or cardiovascular health.
Introduction Evening-time exercise is a frequent cause of severe hypoglycemia in type 1 diabetes, fear of which deters participation in regular exercise. Recommendations for normalizing glycemia around exercise consist of prandial adjustments to bolus insulin therapy and food composition, but this carries only short-lasting protection from hypoglycemia. Therefore, this study aimed to examine the impact of a combined basal-bolus insulin dose reduction and carbohydrate feeding strategy on glycemia and metabolic parameters following evening exercise in type 1 diabetes. Methods Ten male participants (glycated hemoglobin: 52.4±2.2 mmol/mol), treated with multiple daily injections, completed two randomized study-days, whereby administration of total daily basal insulin dose was unchanged (100%), or reduced by 20% (80%). Participants attended the laboratory at ∼08:00 h for a fasted blood sample, before returning in the evening. On arrival (∼17:00 h), participants consumed a carbohydrate meal and administered a 75% reduced rapid-acting insulin dose and 60 min later performed 45 min of treadmill running. At 60 min postexercise, participants consumed a low glycemic index (LGI) meal and administered a 50% reduced rapid-acting insulin dose, before returning home. At ∼23:00 h, participants consumed a LGI bedtime snack and returned to the laboratory the following morning (∼08:00 h) for a fasted blood sample. Venous blood samples were analyzed for glucose, glucoregulatory hormones, non-esterified fatty acids, β-hydroxybutyrate, interleukin 6, and tumor necrosis factor α. Interstitial glucose was monitored for 24 h pre-exercise and postexercise. Results Glycemia was similar until 6 h postexercise, with no hypoglycemic episodes. Beyond 6 h glucose levels fell during 100%, and nine participants experienced nocturnal hypoglycemia. Conversely, all participants during 80% were protected from nocturnal hypoglycemia, and remained protected for 24 h postexercise. All metabolic parameters were similar. Conclusions Reducing basal insulin dose with reduced prandial bolus insulin and LGI carbohydrate feeding provides protection from hypoglycemia during and for 24 h following evening exercise. This strategy is not associated with hyperglycemia, or adverse metabolic disturbances. Clinical trials number NCT02204839, ClinicalTrials.gov.
The purpose of this study was to assess the effects of sucrose vs. glucose ingestion on postexercise liver and muscle glycogen repletion. Fifteen well-trained male cyclists completed two test days. Each test day started with glycogen-depleting exercise, followed by 5 h of recovery, during which subjects ingested 1.5 g·kg(-1)·h(-1) sucrose or glucose. Blood was sampled frequently and (13)C magnetic resonance spectroscopy and imaging were employed 0, 120, and 300 min postexercise to determine liver and muscle glycogen concentrations and liver volume. Results were as follows: Postexercise muscle glycogen concentrations increased significantly from 85 ± 27 (SD) vs. 86 ± 35 mmol/l to 140 ± 23 vs. 136 ± 26 mmol/l following sucrose and glucose ingestion, respectively (no differences between treatments: P = 0.673). Postexercise liver glycogen concentrations increased significantly from 183 ± 47 vs. 167 ± 65 mmol/l to 280 ± 72 vs. 234 ± 81 mmol/l following sucrose and glucose ingestion, respectively (time × treatment, P = 0.051). Liver volume increased significantly over the 300-min period after sucrose ingestion only (time × treatment, P = 0.001). As a result, total liver glycogen content increased during postexercise recovery to a greater extent in the sucrose treatment (from 53.6 ± 16.2 to 86.8 ± 29.0 g) compared with the glucose treatment (49.3 ± 25.5 to 65.7 ± 27.1 g; time × treatment, P < 0.001), equating to a 3.4 g/h (95% confidence interval: 1.6-5.1 g/h) greater repletion rate with sucrose vs. glucose ingestion. In conclusion, sucrose ingestion (1.5 g·kg(-1)·h(-1)) further accelerates postexercise liver, but not muscle glycogen repletion compared with glucose ingestion in trained athletes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.