Soft robots have applications in safe human-robot interactions, manipulation of fragile objects, and locomotion in challenging and unstructured environments. In this article, we present a computational method for augmenting soft robots with proprioceptive sensing capabilities. Our method automatically computes a minimal stretch-receptive sensor network to user-provided soft robotic designs, which is optimized to perform well under a set of user-specified deformation-force pairs. The sensorized robots are able to reconstruct their full deformation state, under interaction forces. We cast our sensor design as a subselection problem, selecting a minimal set of sensors from a large set of fabricable ones, which minimizes the error when sensing specified deformation-force pairs. Unique to our approach is the use of an analytical gradient of our reconstruction performance measure with respect to selection variables. We demonstrate our technique on a bending bar and gripper example, illustrating more complex designs with a simulated tentacle.
We present a method to augment parametric skeletal models with subspace soft-tissue deformations. We combine the benefits of data-driven skeletal models, i.e. accurate replication of contact-free static deformations, with the benefits of pure physics-based models, i.e. skin and skeletal reaction to contact and inertial motion with two-way coupling. We succeed to do so in a highly efficient manner, thanks to a careful choice of reduced model for the subspace deformation. With our method, it is easy to design expressive reduced models with efficient yet accurate force computations, without the need for training deformation examples. We demonstrate the application of our method to parametric models of human bodies, SMPL, and hands, MANO, with interactive simulations of contact with nonlinear soft-tissue deformation and skeletal response.>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.