Abstract.A set of mutation operators for SQL queries that retrieve information from a database is developed and tested against a set of queries drawn from the NIST SQL Conformance Test Suite. The mutation operators cover a wide spectrum of SQL features, including the handling of null values. Additional experiments are performed to explore whether the cost of executing mutants can be reduced using selective mutation or the test suite size can be reduced by using an appropriate ordering of the mutants. The SQL mutation approach can be helpful in assessing the adequacy of database test cases and their development, and as a tool for systematically injecting faults in order to compare different database testing techniques.
This paper presents a tabu search metaheuristic algorithm for the automatic generation of structural software tests. It is a novel work since tabu search is applied to the automation of the test generation task, whereas previous works have used other techniques such as genetic algorithms. The developed test generator has a cost function for intensifying the search and another for diversifying the search that is used when the intensification is not successful. It also combines the use of memory with a backtracking process to avoid getting stuck in local minima. Evaluation of the generator was performed using complex programs under test and large ranges for input variables.Results show that the developed generator is both effective and efficient.
SUMMARYIn the field of database applications a considerable part of the business logic is implemented using a semi-declarative language: the Structured Query Language (SQL). Because of the different semantics of SQL compared to other procedural languages, the conventional coverage criteria for testing are not directly applicable. This paper presents a criterion specifically tailored for SQL queries (SQLFpc). It is based on Masking Modified Condition Decision Coverage (MCDC) or Full Predicate Coverage and takes into account a wide range of the syntax and semantics of SQL, including selection, joining, grouping, aggregations, subqueries, case expressions and null values. The criterion assesses the coverage of the test data in relation to the query that is executed and it is expressed as a set of rules that are automatically generated and efficiently evaluated against a test database. The use of the criterion is illustrated in a case study which includes complex queries.
We present a tool to automatically generate mutants of SQL database queries. The SQLMutation tool is available on the Web and it can be accessed using two different interfaces: A Web application to interactively generate the mutants and a Web service that allows it to be integrated with other applications developed using different platforms.
The techniques for the automatic generation of test cases try to efficiently find a small set of cases that allow a given adequacy criterion to be fulfilled, thus contributing to a reduction in the cost of software testing. In this paper we present and analyze two versions of an approach based on the Scatter Search metaheuristic technique for the automatic generation of software test cases using a branch coverage adequacy criterion. The first test case generator, called TCSS, uses a diversity property to extend the search of test cases to all branches of the program under test in order to generate test cases that cover these. The second, called TCSS-LS, is an extension of the previous test case generator which combines the diversity property with a local search method that allows the intensification of the search for test cases that cover the difficult branches. We present the results obtained by our generators and carry out a detailed comparison with many other generators, showing a good performance of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.