Chronic diseases such as type 2 diabetes and cardiovascular disease are the leading cause of death and disability worldwide. Although the metabolic syndrome has been defined in various ways, the ultimate importance of recognizing this combination of disorders is that it helps identify individuals at high risk for both type 2 diabetes and cardiovascular disease. Evidence from observational and experimental studies links adverse exposures in early life, particularly relating to nutrition, to chronic disease susceptibility in adulthood. Such studies provide the foundation and framework for the relatively new field of developmental origins of health and disease (DOHaD). Although great strides have been made in identifying the putative concepts and mechanisms relating specific exposures in early life to the risk of developing chronic diseases in adulthood, a complete picture remains obscure. To date, the main focus of the field has been on perinatal undernutrition and specific nutrient deficiencies; however, the current global health crisis of overweight and obesity demands that perinatal overnutrition and specific nutrient excesses be examined. This paper assembles current thoughts on the concepts and mechanisms behind the DOHaD as they relate to maternal nutrition, and highlights specific contributions made by macro- and micronutrients.
Nanotoxicity studies are greatly needed to advance nanomedical technologies into clinical practice. We assessed the toxic effects of a single intravenous exposure to commercially available gold nanoparticles (GNPs) in mice and rats. Fifteen-nm GNPs were purchased and independently characterized. Animals were exposed to either 1,000 mg GNPs/kg body weight (GNP group) or phosphate-buffered saline. Subsets of animals were euthanized and samples collected at 1, 7, 14, 21, and 28 days postexposure. Independent characterization demonstrated that the physicochemical properties of the purchased GNPs were in good agreement with the information provided by the supplier. Mice exposed to GNPs developed granulomas in the liver and transiently increased serum levels of the pro-inflammatory cytokine interleukin-18. No such alterations were found in rats. While there was no fatality in mice post-GNP exposure, a number of the rats died within hours of GNP administration. Differences in GNP biodistribution and excretion were also detected between the two species, with rats having a higher relative accumulation of GNPs in spleen and greater fecal excretion. In conclusion, GNPs have the ability to incite a robust macrophage response in mice, and there are important species-specific differences in their biodistribution, excretion, and potential for toxicity.
BackgroundThe liver has the remarkable capacity to regenerate in order to compensate for lost or damaged hepatic tissue. However, pre-existing pathological abnormalities, such as hepatic steatosis (HS), inhibits the endogenous regenerative process, becoming an obstacle for liver surgery and living donor transplantation.Recent evidence indicates that multipotent mesenchymal stromal cells (MSCs) administration can improve hepatic function and increase the potential for liver regeneration in patients with liver damage. Since HS is the most common form of chronic hepatic illness, in this study we evaluated the role of MSCs in liver regeneration in an animal model of severe HS with impaired liver regeneration.MethodsC57BL/6 mice were fed with a regular diet (normal mice) or with a high-fat diet (obese mice) to induce HS. After 30 weeks of diet exposure, 70% hepatectomy (Hpx) was performed and normal and obese mice were divided into two groups that received 5 × 105 MSCs or vehicle via the tail vein immediately after Hpx.ResultsWe confirmed a significant inhibition of hepatic regeneration when liver steatosis was present, while the hepatic regenerative response was promoted by infusion of MSCs. Specifically, MSC administration improved the hepatocyte proliferative response, PCNA-labeling index, DNA synthesis, liver function, and also reduced the number of apoptotic hepatocytes.These effects may be associated to the paracrine secretion of trophic factors by MSCs and the hepatic upregulation of key cytokines and growth factors relevant for cell proliferation, which ultimately improves the survival rate of the mice.ConclusionsMSCs represent a promising therapeutic strategy to improve liver regeneration in patients with HS as well as for increasing the number of donor organs available for transplantation.Electronic supplementary materialThe online version of this article (doi:10.1186/s13287-016-0469-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.