The composition of bacterial populations in copper bioleaching systems was investigated by analysis of DNA obtained either directly from ores or leaching solutions or after laboratory cultures. This analysis consisted of the characterization of the spacer regions between the 16 and 23S genes in the bacterial rRNA genetic loci after PCR amplification. The sizes of the spacer regions, amplified from DNAs obtained from samples, were compared with the sizes of those obtained from cultures of the main bacterial species isolated from bioleaching systems. This allowed a preliminary assessment of the bacterial species present in the samples. Identification of the bacteria was achieved by partial sequencing of the 16S rRNA genes adjacent to the spacer regions. The spacer regions observed in DNA from columns leached at different iron concentrations indicated the presence of a mixture of different bacteria. The spacer region corresponding to Thiobacillus ferrooxidans was the main product observed at high ferrous iron concentration. At low ferrous iron concentration, spacer regions of different lengths, corresponding to Thiobacillus thiooxidans and ''Leptospirillum ferrooxidans'' were observed. However, T. ferrooxidans appeared to predominate after culture of these samples in medium containing ferrous iron as energy source. Although some of these strains contained singular spacer regions, they belonged within previously described groups of T. ferrooxidans according to the nucleotide sequence of the neighbor 16S rRNA. These results illustrate the bacterial diversity in bioleaching systems and the selective pressure generated by different growth conditions.
Rotavirus single-shelled particles have several enzymatic activities that are involved with the synthesis of capped mRNAs both in vivo and in vitro. Because single-shelled particles must be structurally intact to carry out transcription, it has proven to be difficult to identify the protein within such particles that possesses associated RNA polymerase activity. One approach for characterizing the function of the individual proteins within single-shelled particles is to use nucleotide analogs to specifically label those proteins, such as the viral RNA polymerase, that have affinity for nucleotides. In this study, 8-azido-ATP (azido-ATP), a photoreactable nucleotide analog, was used to identify the viral RNA polymerase on the basis of the ability of the analog to inhibit transcription activity associated with rotavirus particles on exposure to UV light. When single-shelled particles were treated with UV light in the presence of [a-32P]azido-ATP, the structural protein VP1 became radiolabeled because of cross-linking of the nucleotide analog, and there was a corresponding decrease in the ability of the particles to synthesize mRNA. In parallel experiments in which single-shelled particles were not exposed to UV light, VP1 was not radiolabeled and the particles successfully used azido-ATP as a substrate for the synthesis of viral mRNAs. Taken together, these results are consistent only with the conclusion that VP1 is the rotavirus RNA-dependent RNA polymerase.
The phenotype of the rotavirus SA-11 mutant tsB carrying a thermosensitive mutation in gene 3, which encodes VP3, was characterized further from both infected cells and purified viral particles. The mutant phenotype was initially identified as negative for in v&o double-and single-stranded RNA synthesis. Our results show that the in vitro transcriptional properties of the tsB mutant at the restrictive temperature were identical to those of the wild-type strain. Similar results were obtained with respect to the VP3-associated guanylyltransferase activity. Analysis of viral particles made by mutant-infected cells at the restrictive temperature showed that only empty single-shelled particles were assembled. This indicates that viral morphogenesis is halted after the initial viral transcription and before RNA replication, suggesting that VP3 may be required as part of the replicase system but not for subviral particle assembly. These data suggest that such a phenotype is not due to alteration of a VP3 function related to transcription.
Human rotavirus isolates from 1100 stool samples were analyzed by polyacrylamide gel electrophoresis, and 48 different migration patterns were detected. Heterogeneity in the migration of segment 10 was observed in both long and short electropherotypes in which three long and two short patterns were identified. In spite of these variations all short and long electropherotypes were subgrouped by enzyme immunoassay as subgroups I and II respectively. Mixed infections were detected in 17% of cases and the subgrouping correlated with the corresponding electropherotypes. The same electropherotypes were present in severe, mild and asymptomatic cases and no electropherotype was particularly associated with greater virulence. Furthermore, the electropherotypes isolated from nosocomial asymptomatic cases were the same as those detected from those admitted with severe diarrhea. It seems unlikely that electropherotyping can be used to identify more virulent strains of rotavirus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.