PRP expressed antibacterial properties, which may be attributed to platelets possessing additional antimicrobial molecules. The application of PRP on periodontal surgical sites is advisable because of its regenerative potential and its antibacterial effects.
Several specific cell cycle activities are dependent on cell-substratum adhesion in nontransformed cells, and the ability of the Ras oncoprotein to induce anchorage-independent growth is linked to its ability to abrogate this adhesion requirement. Ras signals via multiple downstream effector proteins, a synergistic combination of which may be required for the highly altered phenotype of fully transformed cells. We describe here studies on cell cycle regulation of anchorage-independent growth that utilize Ras effector loop mutants in NIH 3T3 and Rat 6 cells. Stable expression of activated H-Ras (12V) induced soft agar colony formation by both cell types, but each of three effector loop mutants (12V,35S, 12V,37G, and 12V,40C) was defective in producing this response. Expression of all three possible pairwise combinations of these mutants synergized to induce anchorage-independent growth of NIH 3T3 cells, but only the 12V,35S-12V,37G and 12V,37G-12V,40C combinations were complementary in Rat 6 cells. Each individual effector loop mutant partially relieved adhesion dependence of pRB phosphorylation, cyclin E-dependent kinase activity, and expression of cyclin A in NIH 3T3, but not Rat 6, cells. The pairwise combinations of effector loop mutants that were synergistic in producing anchorage-independent growth in Rat 6 cells also led to synergistic abrogation of the adhesion requirement for these cell cycle activities. The relationship between complementation in producing anchorage-independent growth and enhancement of cell cycle activities was not as clear in NIH 3T3 cells that expressed pairs of mutants, implying the existence of either thresholds for these activities or additional requirements in the induction of anchorage-independent growth. Ectopic expression of cyclin D1, E, or A synergized with individual effector loop mutants to induce soft agar colony formation in NIH 3T3 cells, cyclin A being particularly effective. Taken together, these data indicate that Ras utilizes multiple pathways to signal to the cell cycle machinery and that these pathways synergize to supplant the adhesion requirements of specific cell cycle events, leading to anchorage-independent growth.
This present study was designed to investigate the combined modulatory effect of garlic oil (GO) and fish oil (FO) on the antioxidant and drug metabolism systems. Rats were fed either a low-maize oil (MO) diet (50 g MO/kg), high-MO diet (235 g MO/kg) or high-FO diet (205 g FO þ 30 g MO/kg) and received different doses of GO (0 -200 mg/kg body weight) three times per week for 6 weeks. Fatty acid analysis showed that 20 : 5n-3 and 22 : 6n-3 were incorporated into serum lipid at the expense of 18 : 2n-6 and 20 : 4n-6 in rats fed the high-FO diet. GO dose-dependently increased hepatic glutathione S-transferase (GST), glutathione reductase, superoxide dismutase (SOD) and ethoxyresorufin O-deethylase (EROD) activities, but decreased glutathione peroxidase and N-nitrosodimethylamine demethylase (NDMAD) activities (P, 0·05). With the exception of glutathione peroxidase, the activities of glutathione reductase, SOD, GST, EROD and NDMAD were modulated by the dietary fat. The high-FO group had greater SOD and EROD activity than either MO-fed group; it also had greater NDMAD activity than the low-MO group (P,0·05). GST activity was higher in rats fed high-FO or high-MO diets than rats fed the low-MO diet. Change in erythromycin demethylase activity, however, was not caused by either dietary fat or GO. Immunoblot assay showed that GO dose-dependently enhanced the protein level of the Ya, Yb1, Yc isoenzymes of GST and cytochrome P450 (CYP) 1A1 and 3A1, but GO suppressed CYP2E1 expression. Regardless of the dosage of GO, the high-FO diet increased CYP1A1, CYP3A1 and CYP2E1 levels compared with the high-and low-MO diets. Accompanying the changes observed in immunoblots, CYP1A1 and CYP3A1 mRNA levels were increased by GO in a dose-dependent manner and also increased additively in combination with FO feeding. These present results indicate that co-administration of GO and FO modulates the antioxidant and drug-metabolizing capacity of animals and that the effect of GO and FO on drug-metabolizing enzymes is additive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.