BackgroundThe DEP domain is a globular domain containing approximately 90 amino acids, which was first discovered in 3 proteins: Drosophila disheveled, Caenorhabditis elegans EGL-10, and mammalian Pleckstrin; hence the term, DEP. DEPDC1B is categorized as a potential Rho GTPase-activating protein. The function of the DEP domain in signal transduction pathways is not fully understood. The DEPDC1B protein exhibits the characteristic features of a signaling protein, and contains 2 conserved domains (DEP and RhoGAP) that are involved in Rho GTPase signaling. Small GTPases, such as Rac, CDC42, and Rho, regulate a multitude of cell events, including cell motility, growth, differentiation, cytoskeletal reorganization and cell cycle progression.ResultsIn this study, we found that it was a guanine nucleotide exchange factor and induced both cell migration in a cultured embryonic fibroblast cell line and cell invasion in cancer cell lines; moreover, it was observed to promote anchorage-independent growth in oral cancer cells. We also demonstrated that DEPDC1B plays a role in regulating Rac1 translocated onto cell membranes, suggesting that DEPDC1B exerts a biological function by regulating Rac1. We examined oral cancer tissue; 6 out of 7 oral cancer tissue test samples overexpressed DEPDC1B proteins, compared with normal adjacent tissue.ConclusionsDEPDC1B was a guanine nucleotide exchange factor and induced both cell migration in a cultured embryonic fibroblast cell line and cell invasion in cancer cell lines; moreover, it was observed to promote anchorage-independent growth in oral cancer cells. We also demonstrated that DEPDC1B exerts a biological function by regulating Rac1. We found that oral cancer samples overexpressed DEPDC1B proteins, compared with normal adjacent tissue. Suggest that DEPDC1B plays a role in the development of oral cancer. We revealed that proliferation was linked to a novel DEPDC1B-Rac1-ERK1/2 signaling axis in oral cancer cell lines.
Novel mixed-lineage kinase protein zipper sterile-a-motif kinase (ZAK) was first cloned by our laboratory. Lung cancer is the leading cause of cancer-related death in the world, including in Taiwan. Here, we wanted to investigate whether ZAK plays a potential role in lung cancer development. First, Western blot analysis results demonstrated that four cell lines expressed high levels of ZAK from among a panel of 10 lung cancer cell lines, and two of three normal lung cells expressed ZAK. ZAK gene expressions were down-regulated in lung cancers by real-time PCR analysis. Overexpression of ZAK suppressed cell proliferation in parallel with increased phosphorylated levels of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). In contrast, ZAK silencing cells inhibited the expressions of phosphorylated ERK and JNK without affecting the expression of phosphorylated p38. The effect of the decreased cell growth rate was significantly but incompletely reversed when ZAK-overexpressing cells were treated with a specific ERK or JNK inhibitor. Moreover, c-Fos and c-Jun, the major downstream components of MAPKs, were up-regulated by ERK and JNK, respectively. When ZAK-overexpressing cells introduced with c-Jun RNA interference (RNAi), the activator protein-1 (AP-1) transcription activity detected by a secreted alkaline phosphatase (SEAP) assay was suppressed and the decreased cell number was reversed compared with the control RNAi-treated group. More importantly, ZAK significantly depressed tumor growth in in vivo study. Taken together, results from both in vitro and in vivo studies indicated that the decrease of lung cancer cell proliferation by ZAK may involve the ERK and JNK pathways via an AP-1 transcription factor. (Cancer Sci 2010; 101: 1374-1381 T he mixed-lineage kinases (MLKs) are a family of serine ⁄ threonine protein kinases that function as mitogen-activated protein kinase (MAPK) kinase kinases (MAPKKKs).(1)The MLKs cluster into three subgroups based on the domain arrangements and sequence similarity within their catalytic domains: the MLKs, the dual-leucine-zipper-bearing kinases, and zipper sterile-a-motif kinase (ZAK). We are the first group to clone ZAK in 2000(2) (GenBank accession number: AF238255). This cDNA has 2456 bp and encodes a protein of 800 amino acids that contains a kinase catalytic domain, a leucine zipper, and a sterile-a-motif (SAM). Our ZAK is also known as ZAK-a or MLK-like MAP triple kinase-a (MLTK-a).(1,3) ZAK-b is an alternative splicing product and is also referred to as MLTK-b or MLK7. ZAK-b is identical to ZAK-a from the amino terminus to the zipper domain, but then diverges and terminates shortly thereafter, so it lacks a SAM domain. (1,3) Similar to other MLK family members, the MLTKs regulate signaling of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 kinase. The transcription factor activator protein-1 (AP-1) regulates a wide range of cellular processes, including cell proliferation, apoptosis, survival, and differe...
It is unclear whether cardiac hypertrophy and hypertrophy-related pathways will be induced by long-term intermittent hypoxia. Thirty-six Sprague-Dawley rats were randomly assigned into three groups: normoxia, and long-term intermittent hypoxia (12% O 2 , 8 h per day) for 4 weeks (4WLTIH) or for 8 weeks (8WLTIH). Myocardial morphology, trophic factors and signalling pathways in the three groups were determined by heart weight index, histological analysis, Western blotting and reverse transcriptase-polymerase chain reaction from the excised left ventricle. The ratio of whole heart weight to body weight, the ratio of left ventricular weight to body weight, the gross vertical cross-section of the heart and myocardial morphological changes were increased in the 4WLTIH group and were further augmented in the 8WLTIH group. In the 4WLTIH group, tumour necrosis factor-α(TNFα), insulin-like growth factor (IGF)-II, phosphorylated p38 mitogen-activated protein kinase (P38), signal transducers and activators of transcription (STAT)-1 and STAT-3 were significantly increased in the cardiac tissues. However, in the 8WLTIH group, in addition to the above factors, interleukin-6, mitogen-activated protein kinase (MEK)5 and extracellular signal-regulated kinase (ERK)5 were significantly increased compared with the normoxia group. We conclude that cardiac hypertrophy associated with TNFα and IGF-II was induced by intermittent hypoxia. The longer duration of intermittent hypoxia further activated the eccentric hypertrophy-related pathway, as well as the interleukin 6-related MEK5-ERK5 and STAT-3 pathways, which could result in the development of cardiac dilatation and pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.