The utilization of machine learning techniques in medicine has exponentially increased over the last decades due to innovations in computer processing, algorithm development, and access to big data. Applications of machine learning techniques to neuroimaging specifically have unveiled various hidden interactions, structures, and mechanisms related to various neurological disorders. One application of interest is the imaging of Alzheimer’s disease, the most common cause of progressive dementia. The diagnoses of Alzheimer’s disease, mild cognitive impairment, and preclinical Alzheimer’s disease have been difficult. Molecular imaging, particularly via PET scans, holds tremendous value in the imaging of Alzheimer’s disease. To date, many novel algorithms have been developed with great success that leverage machine learning in the context of Alzheimer’s disease. This review article provides an overview of the diverse applications of machine learning to PET imaging of Alzheimer’s disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.