Aspiculuris tetraptera a pinworm of mice, is an important parasite in institutions with mice colonies for both research and teaching purposes. Infection with this parasite has impact on biomedical research. This is likely due to the availability of the parasite’s eggs in the environment, therefore can easily be transmitted and infection is generally asymptomatic. No information regarding the prevalence, morphology or phylogeny is available on A. tetraptera from Saudi Arabia. A group of 50 laboratory mice were investigated for the presence of A. tetraptera. Worms were described morphologically and molecular characterization was attempted using 18S rRNA and Cytochrome Oxidase Subunit I genes. The prevalence of A. tetraptera infestation in the laboratory mice examined was found to be 46%. Morphological description indicated that the worms belong to A. tetraptera and this was confirmed by molecular characterization. Both regions studied have shown that the worm under investigation grouped with A. tetraptera. 18S rDNA sequences obtained in the present study showed high identity with sequences from A. tetraptera while Cytochrome c Oxidase subunit I gene (COI) sequences showed intraspecific variation resulted into two haplotypes from the isolates in the present study. A. tetraptera was recorded for the first time from Saudi Arabia. Molecular characterization has shown, based on the COI sequences, that the Saudi isolates of A. tetraptera are distinct.
Sarcocystosis is a parasitic disease caused by an intracellular protozoan parasite Sarcocystis belonging to the phylum Apicomplexa. These parasites have a requisite two‐host life cycle. Recently, there are many Sarcocystis species that identified morphologically. In the present study, diaphragmatic muscle samples from the domestic horse (Equus caballus) were examined for Sarcocystis infection. The natural infection with sarcocysts was recorded to be 62·5% for only microcysts in the infected muscles. Molecular analysis using the 18S rRNA gene was conducted to swiftly and accurately identify the recovered species. Studies on the expression of the 18S rRNA gene have confirmed that the present parasite isolates belong to the Sarcocystis genus. The sequence data showed significant identities (>80%) with archived gene sequences from species within the Sarcocystidae family, and a dendrogram showing the phylogenetic relationship was constructed. The most closely related species were the previously described Sarcocystis fayeri and Sarcocystis bertrami. The current data showed that the present species was identified as S. fayeri and deposited in GenBank (accession number MF614956.1). This study highlights the importance of the genetic data in the exact taxonomy within sarcocystid species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.