In recent years, the number of studies investigating the impact of the gut microbiome in colorectal cancer (CRC) has risen sharply. As a result, we now know that various microbes (and microbial communities) are found more frequently in the stool and mucosa of individuals with CRC than healthy controls, including in the primary tumors themselves, and even in distant metastases. We also know that these microbes induce tumors in various mouse models, but we know little about how they impact colon epithelial cells (CECs) directly, or about how these interactions might lead to modifications at the genetic and epigenetic levels that trigger and propagate tumor growth. Rates of CRC are increasing in younger individuals, and CRC remains the second most frequent cause of cancer-related deaths globally. Hence, a more in-depth understanding of the role that gut microbes play in CRC is needed. Here, we review recent advances in understanding the impact of gut microbes on the genome and epigenome of CECs, as it relates to CRC. Overall, numerous studies in the past few years have definitively shown that gut microbes exert distinct impacts on DNA damage, DNA methylation, chromatin structure and non-coding RNA expression in CECs. Some of the genes and pathways that are altered by gut microbes relate to CRC development, particularly those involved in cell proliferation and WNT signaling. We need to implement more standardized analysis strategies, collate data from multiple studies, and utilize CRC mouse models to better assess these effects, understand their functional relevance, and leverage this information to improve patient care.
Introduction We investigated the TOMM40-APOE genomic region that has been associated with the risk and age of onset of late-onset Alzheimer's disease (LOAD) to determine if a highly polymorphic, intronic polyT within this region (rs10524523, hereafter 523) affects expression of the APOE and TOMM40 genes. Alleles of this locus are classified: short-S, long-L, very long-VL based on the number of T-residues. Methods We evaluated differences in APOE-mRNA and TOMM40-mRNA levels as a function of 523 genotype in two brain regions from APOEε3/3 Caucasian autopsy-confirmed LOAD cases and normal controls. We further investigated the effect of the 523 locus in its native genomic context using a luciferase expression system. Results The expression of both genes was significantly increased with disease. Mean expression of APOE and TOMM40-mRNA levels were higher in VL-homozygotes compared to S-homozygotes in temporal and occipital cortexes from Normal and LOAD subjects. Results of a luciferase reporter system were consistent with the human brain mRNA analysis: the 523-VL polyT resulted in significantly higher expression than the S-polyT. While the effect of polyT length on reporter expression was the same in HepG2 hepatoma and SH-SY5Y neuroblastoma cells, the magnitude of the effect was greater in the neuroblastoma than in the hepatoma cells, which implies tissue-specific modulation of the 523-polyT. Conclusions These results suggest that the 523 locus may contribute to LOAD susceptibility by modulating the expression of TOMM40 and/or APOE transcription.
Background Identifying potential resistance mechanisms while tumour cells still respond to therapy is critical to delay acquired resistance. Methods We generated the first comprehensive multi-omics, bulk and single-cell data in sensitive head and neck squamous cell carcinoma (HNSCC) cells to identify immediate responses to cetuximab. Two pathways potentially associated with resistance were focus of the study: regulation of receptor tyrosine kinases by TFAP2A transcription factor, and epithelial-to-mesenchymal transition (EMT). Results Single-cell RNA-seq demonstrates heterogeneity, with cell-specific TFAP2A and VIM expression profiles in response to treatment and also with global changes to various signalling pathways. RNA-seq and ATAC-seq reveal global changes within 5 days of therapy, suggesting early onset of mechanisms of resistance; and corroborates cell line heterogeneity, with different TFAP2A targets or EMT markers affected by therapy. Lack of TFAP2A expression is associated with HNSCC decreased growth, with cetuximab and JQ1 increasing the inhibitory effect. Regarding the EMT process, short-term cetuximab therapy has the strongest effect on inhibiting migration. TFAP2A silencing does not affect cell migration, supporting an independent role for both mechanisms in resistance. Conclusion Overall, we show that immediate adaptive transcriptional and epigenetic changes induced by cetuximab are heterogeneous and cell type dependent; and independent mechanisms of resistance arise while tumour cells are still sensitive to therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.