High risk neuroblastoma (HRNB) accounts for 15% of all pediatric cancer deaths. Despite aggressive therapy approximately half of patients will relapse, typically with only transient responses to second-line therapy. This study evaluated the ornithine decarboxylase inhibitor difluoromethylornithine (DFMO) as maintenance therapy to prevent relapse following completion of standard therapy (Stratum 1) or after salvage therapy for relapsed/refractory disease (Stratum 2). This Phase II single agent, single arm multicenter study enrolled from June 2012 to February 2016. Subjects received 2 years of oral DFMO (750 ± 250 mg/m2 twice daily). Event free survival (EFS) and overall survival (OS) were determined on an intention-to-treat (ITT) basis. 101 subjects enrolled on Stratum 1 and 100 were eligible for ITT analysis; two-year EFS was 84% (±4%) and OS 97% (±2%). 39 subjects enrolled on Stratum 2, with a two-year EFS of 54% (±8%) and OS 84% (±6%). DFMO was well tolerated. The median survival time is not yet defined for either stratum. DFMO maintenance therapy for HRNB in remission is safe and associated with high EFS and OS. Targeting ODC represents a novel therapeutic mechanism that may provide a new strategy for preventing relapse in children with HRNB.
Neuroblastoma is a sympathetic nervous system tumor, primarily presenting in children under 6 years of age. The long-term prognosis for patients with high-risk neuroblastoma (HRNB) remains poor despite aggressive multimodal therapy. This report provides an update to a phase II trial evaluating DFMO as maintenance therapy in HRNB. Event-free survival (EFS) and overall survival (OS) of 81 subjects with HRNB treated with standard COG induction, consolidation and immunotherapy followed by 2 years of DFMO on the NMTRC003/003b Phase II trial were compared to a historical cohort of 76 HRNB patients treated at Beat Childhood Cancer Research Consortium (BCC) hospitals who were disease-free after completion of standard upfront therapy and did not receive DFMO. The 2-and 5-year EFS were 86.4%
Neuroblastoma is a heterogeneous disease in which 22% of tumors show MycN oncogene amplification and are associated with poor clinical outcome. MycN is a transcription factor that regulates the expression of a number of proteins that affect the clinical behavior of neuroblastoma. We report here that cellular retinoic acid-binding protein II (CRABP-II) is a novel MycN target, expressed at significantly higher levels in primary neuroblastoma tumors with mycN oncogene amplification as compared with non-MycN-amplified tumors. Moreover, regulated induction and repression of MycN in a neuroblastoma-derived cell line resulted in temporal and proportionate expression of CRABP-II. CRABP-II is expressed in several cancers, but its role in tumorigenesis has not been elucidated. We show that MycN binds to the promoter of CRABP-II and induces CRABP-II transcription directly. In addition, CRABP-II-transfected neuroblastoma cell lines show an increase in MycN protein levels resulting in increased cell motility. Gene expression profiling of CRABP-II-expressing cell lines uncovered increased expression of the HuB (Hel N1) gene. Hu proteins have been implicated in regulating the stability of MycN mRNA and other mRNAs by binding to their 3 ¶ untranslated regions. We did not, however, observe any change in MycN mRNA stability or protein half-life in response to CRABP-II expression. In contrast, de novo MycN protein synthesis was increased in CRABP-II-expressing neuroblastoma cells, thereby suggesting an autoregulatory loop that might exacerbate the effects of MycN gene amplification and affect the clinical outcome. Our findings also suggest that CRABP-II may be a potential therapeutic target for neuroblastoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.