The multidisciplinary approach has been adopted to model the formation and propagation of blistering effect for evaluation of useful coating life in the multi-layered coating-substrate system. Prognostic model of de-bonding driving force has been formulated as a function of material science, solid mechanics and fracture mechanics properties to estimate critical, safe and fail conditions of the coatingsubstrate system. The blister growth velocity rate is also included in the developed model to estimate the blister propagation as a function of diffusion-induced stress and residual stress. The proposed prognostic modelling for the formation and propagation of blistering effect are combined to form an assessment model for evaluation of useful coating life of the multi-layered coating-substrate system and validated through experimental observation.
The ambiguous nature of meteorological parameters in uncontrolled environmental conditions makes it difficult to determine the structural integrity of stationary and mobile assets. The weather conditions for large vehicles, at The Tank Museum at Bovington, UK, which are operating in controlled and uncontrolled environmental conditions are investigated through weather history and corrosion monitoring techniques applied to large military vehicles by using linear polarisation resistance method. Corrosion initiation and propagation was found on several occasions during the operation of large vehicles within uncontrolled environment due to critical level of metrological parameters including salinity, relative humidity and rainfall. Comprehensive solutions have been proposed to detect damage initiation at the earliest possible stage to prompt maintenance professionals to take necessary actions to avoid damage. Early detection techniques will help to prolong the service life of large vehicles or metal structures which are operating or installed remotely. The analysis of diffusion of salt particles into coating during summer and winter season is also presented by estimating the salt concentration by taking linear relationship between wind speed and salt deposition rate based on ISO classification of airborne salinity. The proposed solutions can be applied to valuable assets operating in coastal, non-coastal and near the sea regions to predict and estimate the damage. The research will directly impact the maintenance and reliability of the automotive, oil and gas pipelines, aerospace and defence applications through remote condition monitoring technique.
The performance and availability of high priority structures can be greatly affected by corrosion damage. The application of protective coatings, frequent inspections and scheduled based maintenance activities result in huge direct and indirect financial loss to organisations. The expeditious detection of coating failure and corrosion damage can result in precise and costeffective condition-based maintenance. Coating failure and corrosion phenomena are driven by complex multidisciplinary parameters according to extensive research findings in the literature. State-of-the-art prognostic models proposed in recent years incorporate complex multidisciplinary parameters, therefore a real-time prognostic monitoring system must acquire these complex parameters to allow accurate prediction. The work reported here covers the development of a realtime monitoring system using micro-sensors and includes the validation of the system through accelerated corrosion and coating failure testing. The system contains a remote terminal unit that includes a linear polarisation method for corrosion detection under the coating and a micro-strain gauge method for monitoring stress behaviour over the coating. The software at base station includes a graphical user interface and database to store parameters for further processing and failure prediction. The real-time monitoring system can be applied to remote, stationary and mobile assets to monitor the mechanical and chemical changes within coating-substrate systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.