Pyruvic acid in the atmosphere is found in both the gas and aqueous phases, and its behavior gives insight into that of other α-keto acids. Photolysis is a significant degradation pathway for this molecule in the environment, and in aqueous solution the major photoproducts are higher-molecular-weight compounds that may contribute to secondary organic aerosol mass. The kinetics of the aqueous-phase photolysis of pyruvic acid under aerobic and anaerobic conditions was investigated in order to calculate the first-order rate constant, Jaq, in solution. Analysis of the exponential decay of pyruvic acid was performed by monitoring both pyruvic acid and its photolytic products over the course of the reaction by (1)H NMR spectroscopy. Detection of major and minor products in the 0.1, 0.05, and 0.02 M pyruvic acid photolyses clearly demonstrates that the primary reaction pathways are highly dependent on the initial pyruvic acid concentration and the presence of dissolved oxygen. The Jaq values were calculated with approximations based on the dominant pathways for limiting cases of the mechanism. Finally, a model study using the calculated rate constants demonstrates the importance of aqueous-phase photolysis as a sink for pyruvic acid in the atmosphere, compared with gas-phase photolysis and OH oxidation.
The reaction of electronically excited triplet state sulfur dioxide (SO) with water was investigated both theoretically and experimentally. The quantum chemical calculations find that the reaction leads to the formation of hydroxyl radical (OH) and hydroxysulfinyl radical (HOSO) via a low energy barrier pathway. Experimentally the formation of OH was monitored via its reaction with methane, which itself is relatively unreactive with SO, making it a suitable probe of OH production from the reaction of SO and water. This reaction has implications for the formation of OH in environments that are assumed to be depleted in OH, such as volcanic plumes. This reaction also provides a mechanism for the formation of OH in planetary atmospheres with little or no oxygen (O) or ozone (O) present.
Sunlight can initiate photochemical reactions of organic molecules though direct photolysis, photosensitization, and indirect processes, often leading to complex radical chemistry that can increase molecular complexity in the environment. α-Keto acids act as photoinitiators for organic species that are not themselves photoactive. Here, we demonstrate this capability through the reaction of two α-keto acids, pyruvic acid and 2-oxooctanoic acid, with a series of fatty acids and fatty alcohols. We show for five different cases that a cross-product between the photoinitiated α-keto acid and non-photoactive species is formed during photolysis in aqueous solution. Fatty acids and alcohols are relatively unreactive species, which suggests that α-keto acids are able to act as radical initiators for many atmospherically relevant molecules found in the sea surface microlayer and on atmospheric aerosol particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.