Parasite infections often lead to dramatically different outcomes among host species. Although an emerging body of ecoimmunological research proposes that hosts experience a fundamental trade-off between pathogen defences and life-history activities, this line of inquiry has rarely been extended to the most essential outcomes of host-pathogen interactions: namely, infection and disease pathology. Using a comparative experimental approach involving 13 amphibian host species and a virulent parasite, we test the hypothesis that Ôpace-of-lifeÕ predicts parasite infection and host pathology. Trematode exposure increased mortality and malformations in nine host species. After accounting for evolutionary history, species that developed quickly and metamorphosed smaller (Ôfast-speciesÕ) were particularly prone to infection and pathology. This pattern likely resulted from both weaker host defences and greater adaptation by parasites to infect common hosts. Broader integration between life history theory and disease ecology can aid in identifying both reservoir hosts and species at risk of disease-driven declines.
Parasites and pathogens can influence the survivorship, behavior, and very structure of their host species. For example, experimental studies have shown that trematode parasites can cause high frequencies of severe limb malformations in amphibians. In a broad‐scale field survey covering parts of California, Oregon, Washington, Idaho, and Montana, we examined relationships between the frequency and types of morphological abnormalities in amphibians and the abundance of trematode parasite infection, pH, concentrations of 61 pesticides, and levels of orthophosphate and total nitrate. We recorded severe malformations at frequencies ranging from 1% to 90% in nine amphibian species from 53 aquatic systems. Infection of larvae by the trematode Ribeiroia ondatrae was associated with, and functionally related to, higher frequencies of amphibian limb malformations than found in uninfected populations (≤5%). Parasites were concentrated around the basal tissue of hind limbs in infected anurans, and malformations associated with infection included skin webbings, supernumerary limbs and digits, and missing or malformed hind limbs. In the absence of Ribeiroia, amphibian populations exhibited low (0–5%) frequencies of abnormalities involving missing digits or distal portions of a hind limb. Species were affected differentially by the parasite, and Ambystoma macrodactylum, Hyla regilla, Rana aurora, R. luteiventris, and Taricha torosa typically exhibited the highest frequencies of abnormalities. None of the water‐quality variables measured was associated with malformed amphibians, but aquatic snail hosts (Planorbella spp.) were significant predictors of the presence and abundance of Ribeiroia infection. Morphological comparisons of adult specimens of Ribeiroia collected from different sites and raised in experimental definitive hosts suggested that all samples represented the same species—R. ondatrae. These field results, coupled with experimental research on the effects of Ribeiroia on amphibians, demonstrate that Ribeiroia infection is an important and widespread cause of amphibian limb malformations in the western United States. The relevance of trematode infection to declines of amphibian populations and the influence of habitat modification on the pathology and life cycle of Ribeiroia are emphasized as areas requiring further research.
Widespread reports of malformed amphibians in North America have prompted investigations into the cause(s) and implications of the phenomenon. Recently, a trematode parasite (Ribeiroia ondatrae) was identified as the probable cause o
Parasites and pathogens can influence the survivorship, behavior, and very structure of their host species. For example, experimental studies have shown that trematode parasites can cause high frequencies of severe limb malformations in amphibians. In a broad-scale field survey covering parts of California, Oregon, Washington, Idaho, and Montana, we examined relationships between the frequency and types of morphological abnormalities in amphibians and the abundance of trematode parasite infection, pH, concentrations of 61 pesticides, and levels of orthophosphate and total nitrate. We recorded severe malformations at frequencies ranging from 1% to 90% in nine amphibian species from 53 aquatic systems. Infection of larvae by the trematode Ribeiroia ondatrae was associated with, and functionally related to, higher frequencies of amphibian limb malformations than found in uninfected populations (Յ5%). Parasites were concentrated around the basal tissue of hind limbs in infected anurans, and malformations associated with infection included skin webbings, supernumerary limbs and digits, and missing or malformed hind limbs. In the absence of Ribeiroia, amphibian populations exhibited low (0-5%) frequencies of abnormalities involving missing digits or distal portions of a hind limb. Species were affected differentially by the parasite, and Ambystoma macrodactylum, Hyla regilla, Rana aurora, R. luteiventris, and Taricha torosa typically exhibited the highest frequencies of abnormalities. None of the water-quality variables measured was associated with malformed amphibians, but aquatic snail hosts (Planorbella spp.) were significant predictors of the presence and abundance of Ribeiroia infection. Morphological comparisons of adult specimens of Ribeiroia collected from different sites and raised in experimental definitive hosts suggested that all samples represented the same species-R. ondatrae. These field results, coupled with experimental research on the effects of Ribeiroia on amphibians, demonstrate that Ribeiroia infection is an important and widespread cause of amphibian limb malformations in the western United States. The relevance of trematode infection to declines of amphibian populations and the influence of habitat modification on the pathology and life cycle of Ribeiroia are emphasized as areas requiring further research.
Summary1. An emerging framework in animal disease ecology seeks to 'decompose' a host's response to disease into resistance, or its ability to resist infection following exposure, and tolerance, or its ability to limit the damage associated with infection. How these processes vary over the life history of a host, however, and whether developmental changes in resistance and tolerance account for 'critical windows' of disease vulnerability remain open questions. 2. Critical developmental windows are particularly important for infections that alter host development. Recently, increased observations of amphibians with severe limb malformations have stimulated debate over the causes responsible and whether malformation types can be used to infer the agent responsible. The trematode parasite Ribeiroia ondatrae, for example, is often implicated in accounts of extra-legged frogs, but is believed to be unimportant in explaining missing legged animals. Here, we test the influence of host developmental stage, from eggs to post-metamorphosis, on the risk of mortality and the types of malformations produced in Pacific chorus frogs (Pseudacris regilla) following exposure to trematode infection. 3. Consistent with a critical window of vulnerability, host mortality and malformations were greatest among animals exposed during pre-limb and early limb development (15-90%) and decreased to <5% with progressive development. Early stage animals also exhibited a higher frequency of missing limbs, whereas extra limbs and limb elements developed predominantly among tadpoles exposed after limb development was initiated. Hosts infected later in limb development were normal or exhibited only minor outgrowths and abnormal skin webbings. 4. Increases in host tolerance rather than host resistance largely explained the observed changes in pathology. Prior to host metamorphosis, parasites exhibited comparable success invading host tissue, but the amount of resulting damage differed significantly as a function of host size and developmental stage. Following metamorphosis hosts were significantly more resistant to infections, however. 5. These findings highlight the importance of critical developmental windows for infectious diseases and underscore the role of developmental changes in host tolerance in controlling this process. Forecasted changes in climate, for example, have enormous potential to influence both the timing and intensity of host-parasite interactions in nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.