Conversion of plant cell walls to ethanol constitutes second generation bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation and separation. Ultimately, it is desirable to combine as many of the biochemical steps as possible in a single organism to achieve CBP (consolidated bioprocessing). A commercially ready CBP organism is currently unreported. Production of second generation bioethanol is hindered by economics, particularly in the cost of pretreatment (including waste management and solvent recovery), the cost of saccharification enzymes (particularly exocellulases and endocellulases displaying kcat ~1 s−1 on crystalline cellulose), and the inefficiency of co-fermentation of 5- and 6-carbon monosaccharides (owing in part to redox cofactor imbalances in Saccharomyces cerevisiae).
CTP:phosphocholine cytidylyltransferase alpha (CCTalpha) contains a central region that functions as a catalytic domain, converting phosphocholine and cytidine 5'-triphosphate (CTP) to CDP-choline for the subsequent synthesis of phosphatidylcholine. We have investigated the catalytic role of lysine 122 and arginine 196 of rat CCTalpha using site-directed mutagenesis and a baculovirus expression system. Arginine 196 is part of the highly conserved RTEGIST motif, while lysine 122 has not previously been identified by protein sequence alignment as a candidate catalytic amino acid. Removing the side chain of lysine 122 compromises the catalytic ability of CCTalpha, decreasing the apparent V(max) value in mutant enzymes Lys122Ala and Lys122Arg to 0.30 and 0.09% of the wild-type value, respectively. The decrease in V(max) is accompanied by dramatic 471- and 80-fold increases in the apparent K(m) value for phosphocholine but no greater than 3-fold increases in the apparent Hill constant (K*) value for CTP. Mutation of arginine 196 to lysine results in an enzyme that retains 24% of the wild-type V(max) value with a modest 5-fold increase in the K(m) value for phosphocholine. However, the Arg196Lys mutant enzyme exhibits a 23-fold increase in the K* value for CTP. These data suggest lysine 122 and arginine 196 of rat CTP:phosphocholine cytidylyltransferase are functionally important amino acids, perhaps at or near the active site involved in forming contacts with the substrates phosphocholine and CTP, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.