The permeability of Brazilian Eucalyptus grandis and Eucalyptus citriodora wood was measured in a custom build gas analysis chamber in order to determine which species could be successfully treated with preservatives. Liquid permeability was tested using an emulsion of Neen oil and a control of distillated water. Air was used to test the gas phase permeability. For both Eucalyptus grandis and Eucalyptus citriodora, the longitudinal permeability of gas was shown to be about twice as great as the liquid phase permeability. No radial permeability was observed for either wood. The permeability of air and water through the sapwood of Eucalyptus grandis was greater than that through the sapwood of Eucalyptus citriodora. The permeability of neen oil preservative through the sapwood of Eucalyptus grandis was also greater than through the sapwood of E. Citradora, but the difference was not statistically significant. Scanning Electron Microscopy images showed that the distribution and obstruction in the vessels could be correlated with observed permeability properties. Irrespective of the causes of differences in permeability between the species, the fluid phase flux through the sapwood of both species was significant, indicating that both Eucalyptus grandis and Eucalyptus citriodora could be successfully treated with wood preservative.
All‐solid‐state lithium‐ion electrolytes offer substantial safety benefits compared to flammable liquid organic electrolytes. However, a great challenge in solid electrolyte batteries is forming a stable and ion conducting interface between the electrolyte and active material. This study investigates and characterizes a possible solid‐state electrode‐electrolyte pair for the high voltage active cathode material LiMn1.5Ni0.5O4 (LMNO) and electrolyte Li1+xAlxGe2‐x(PO4)3 (LAGP). In situ X‐ray diffraction measurements were taken on pressed pellets comprised of a blend of LMNO and LAGP during exposure to elevated temperatures to determine the product materials that form at the interface of LMNO and LAGP and the temperatures at which they form. In particular, above 600°C a material consistent with LiMnPO4 was formed. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy were used to image the morphology and elemental compositions of product materials at the interface, and electrochemical characterization was performed on LMNO‐coated LAGP electrolyte pellet half cells. Although the voltage of Li/LAGP/LMNO assembled batteries was promising, thick interfacial phases resulted in high electrochemical resistance, demonstrating the need for further understanding and control over material processing in the LAGP/LMNO system to reduce interfacial resistance and improve electrochemical performance.
Solid Oxide Fuel Cells (SOFCs) are widely considered to be an ideal power source across a range of industries in the near future due to their high efficiency, high power density, and fuel flexibility. However, for widespread usage of SOFCs to be feasible, certain disadvantages, such as their high operating temperature, electrochemical losses, and high cost of manufacturing, must be solved. In particular, the field of materials research occupies a unique position of being able to quickly and simultaneously solve many of these issues through the development of material compositions and structures that do not currently exist in the industry. Especially relevant to solid oxide fuel cells in particular, is the impact that the electrodes’ geometries and compositions have on the operating performance. The electrodes’ ability to quickly move reactants to the interface of the electrolyte and remove products to the bulk flow comes into play as the fuel cell operates at higher current densities and concentration losses become prominent. Therefore, the microstructures present throughout the electrodes’ depth plays a vital role in improving overall cell performance. However, current fuel cell research has not yet effectively captured and defined the connections of the microstructure parameters and measured their impact on cell behavior. Additionally, homogeneous electrode design and implementation have dominated the research and commercial space thus far. The technique of functional material grading, which has begun to see wide research and commercial usage for such problems as acoustic impedance matching, thermal control, and mechanical design will be leveraged for the enhancement of SOFC electrodes. Functionally graded electrodes have been used in solid oxide fuel cell research in recent years in an effort to improve the cell performance by altering the microstructure including porosity, particle size, and composition of electronic and ionic conductors near the triple phase boundary region. Normally the functional grading process adds additional fabrication steps making it less desirable as an optimization process and easy manufacturing method. However, by using an additive manufacturing process it eliminates the need for multiple discrete graded layers to be deposited to obtain a graded electrode functional layer. This study seeks to explore the correlations of geometry and structure parameters from the meso-scale through to the micro-scale level, together with mass transfer, ionic and electronic transport, and gas-surface electrochemical reactions inside the electrodes to guide future additive manufacturing of SOFCs. Outlined is the development of an effective medium model for simulating the performance of fuel cell microstructures as a function of specific operating ranges in temperature, pressure, and in fuels used. Smooth and continuous linear and nonlinear functional gradation profiles of porosity and material composition are studied within the framework of an effective medium boundary value problem where the electrochemical relations, such as the Butler-Volmer equation, percolating conduction paths, and gas diffusion are solved using the finite difference method. The form of these relations for homogeneous electrodes was analyzed by Costamagna, et. al [1], who also defined outstanding problems with regards to optimizing SOFC electrodes [2]. Globally optimal linear and nonlinear gradation profiles and cell parameters are derived as a function of particle sizes, ratio of conductivities, and desired operating conditions and scored based on their reduction of cell overpotentials. [1] Costamagna, P., P. Costa, and V. Antonucci, Micro-modelling of solid oxide fuel cell electrodes. Electrochimica Acta, 1998. 43(3-4), pp.375-394. [2] Costamagna, P., P. Costa, and E. Arato, Some more considerations on the optimization of cermet solid oxide fuel cell electrodes. Electrochimica Acta, 1998. 43(8), pp.967-972. Figure 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.