We designed block copolymer pro-amphiphiles and amphiphiles for providing very long-term release of nitric oxide (NO). A block copolymer of N-acryloylmorpholine (AM, as a hydrophile) and N-acryloyl-2,5-dimethylpiperazine (AZd, as a hydrophilic precursor) was synthesized. The poly(N-acryloyl-2,5-dimethylpiperazine) (PAZd) is water-soluble, but chemical reaction of the secondary amines with NO to form a N-diazeniumdiolate (NONOate) converts the hydrophilic PAZd into a hydrophobic poly(sodium-1-(N-acryloyl-2,5-dimethylpiperazin-1-yl)diazen-1-ium-1,2-diolate) (PAZd.NONOate), driving aggregation. The PAM block guides this process toward micellization, rather than precipitation, yielding ca. 50 nm spherical micelles. The hydrophobic core of the micelle shielded the NONOate from the presence of water, and thus protons, which are required for NO liberation, delaying release to a remarkable 7 d half-life. Release of the NO returned the original soluble polymer. The very small NO-loaded micelles were able to penetrate complex tissue structures, such as the arterial media, opening up a number of tissue targets to NO-based therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.