Arrays of highly ordered silicon nanowire (SiNW) clusters are fabricated using complementary metal-oxide semiconductor (CMOS) field effect transistor-compatible technology, and the ultrasensitive, label-free, electrical detection of cardiac biomarker in real time using the array sensor is presented. The successful detection of human cardiac troponin-T (cTnT) has been demonstrated in an assay buffer solution of concentration down to 1 fg/mL, as well as in an undiluted human serum environment of concentration as low as 30 fg/mL. The high specificity, selectivity, and swift response time of the SiNWs to the presence of ultralow concentrations of a target protein in a biological analyte solution, even in the presence of a high total protein concentration, paves the way for the development of a medical diagnostic system for point-of-care application that is able to provide an early and accurate indication of cardiac cellular necrosis.
To provide a comprehensive understanding of the field effect in silicon nanowire (SiNW) sensors, we take a systematic approach to fine tune the distance of a charge layer by controlling the hybridization sites of DNA to the SiNW preimmobilized with peptide nucleic acid (PNA) capture probes. Six target DNAs of the same length, but differentiated successively by three bases in the complementary segment, are hybridized to the PNA. Fluorescent images show that the hybridization occurs exclusively on the SiNW surface between the target DNAs and the PNA. However, the field-effect response of the SiNW sensor decreases as the DNA (charge layer) moves away from the SiNW surface. Theoretical analysis shows that the field effect of the SiNW sensor relies primarily on the location of the charge layer. A maximum of 102% change in resistance is estimated based on the shortest distance of the DNA charge layer (4.7 A) to the SiNW surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.