The present study tested whether subjects respond to unanticipated short perturbations in voice loudness feedback with compensatory responses in voice amplitude. The role of stimulus magnitude (±1,3 vs 6 dB SPL), stimulus direction (up vs down), and the ongoing voice amplitude level (normal vs soft) were compared across compensations. Subjects responded to perturbations in voice loudness feedback with a compensatory change in voice amplitude 76% of the time. Mean latency of amplitude compensation was 157 ms. Mean response magnitudes were smallest for 1-dB stimulus perturbations (0.75 dB) and greatest for 6-dB conditions (0.98 dB). However, expressed as gain, responses for 1-dB perturbations were largest and almost approached 1.0. Response magnitudes were larger for the soft voice amplitude condition compared to the normal voice amplitude condition. A mathematical model of the audio-vocal system captured the main features of the compensations. Previous research has demonstrated that subjects can respond to an unanticipated perturbation in voice pitch feedback with an automatic compensatory response in voice fundamental frequency. Data from the present study suggest that voice loudness feedback can be used in a similar manner to monitor and stabilize voice amplitude around a desired loudness level.
In order to maintain a steady voice fundamental frequency (F 0 ), it is assumed that people compare their auditory feedback pitch with an internal (memory) or external (acoustic) referent. In the present study we examined whether the internal referent is fixed or variable by comparing voice F 0 responses to incorrect auditory feedback in two timing conditions. In one condition, the incorrect pitch was introduced during vocalization (ON condition). In the second, the incorrect auditory feedback pitch was presented before vocal onset and then removed during vocalization (OFF condition). These conditions were examined with pitch-shift stimuli of ±25, 100, and 200 cents. There were no differences in response latency or magnitude between the two timing conditions, indicating that for a sustained-pitch vocalization task, the internal referent is not fixed. Several alternative types of referencing are discussed, which include use of a pitch relative to that which existed at the onset of vocalization (a sample and hold strategy) and pitch velocity referencing.
Recent research has found that while speaking, subjects react to perturbations in pitch of voice auditory feedback by changing their voice fundamental frequency (F0) to compensate for the perceived pitch-shift. The long response latencies (150-200 ms) suggest they may be too slow to assist in on-line control of the local pitch contour patterns associated with lexical tones on a syllable-to-syllable basis. In the present study, we introduced pitch-shifted auditory feedback to native speakers of Mandarin Chinese while they produced disyllabic sequences /ma ma/ with different tonal combinations at a natural speaking rate. Voice F0 response latencies (100-150 ms) to the pitch perturbations were shorter than syllable durations reported elsewhere. Response magnitudes increased from 50 cents during static tone to 85 cents during dynamic tone productions. Response latencies and peak times decreased in phrases involving a dynamic change in F0. The larger response magnitudes and shorter latency and peak times in tasks requiring accurate, dynamic control of F0, indicate this automatic system for regulation of voice F0 may be task-dependent. These findings suggest that auditory feedback may be used to help regulate voice F0 during production of bi-tonal Mandarin phrases.
The present study was undertaken to examine if a subject's voice F 0 responded not only to perturbations in pitch of voice feedback but also to changes in pitch of a side tone presented congruent with voice feedback. Small magnitude brief duration perturbations in pitch of voice or tone auditory feedback were randomly introduced during sustained vowel phonations. Results demonstrated a higher rate and larger magnitude of voice F 0 responses to changes in pitch of the voice compared with a triangular-shaped tone (experiment 1) or a pure tone (experiment 2). However, response latencies did not differ across voice or tone conditions. Data suggest that subjects responded to the change in F 0 rather than harmonic frequencies of auditory feedback because voice F 0 response prevalence, magnitude, or latency did not statistically differ across triangular-shaped tone or puretone feedback. Results indicate the audio-vocal system is sensitive to the change in pitch of a variety of sounds, which may represent a flexible system capable of adapting to changes in the subject's voice. However, lower prevalence and smaller responses to tone pitch-shifted signals suggest that the audio-vocal system may resist changes to the pitch of other environmental sounds when voice feedback is present.
The pitch-shift reflex is a sophisticated system that produces a "compensatory" response in voice F 0 that is opposite in direction to a change in voice pitch feedback (pitch-shift stimulus), thus correcting for the discrepancy between the intended voice F 0 and the feedback pitch. In order to more fully exploit the pitch-shift reflex as a tool for studying the influence of sensory feedback mechanisms underlying voice control, the optimal characteristics of the pitch-shift stimulus must be understood. The present study was undertaken to assess the effects of altering the duration of the interstimulus interval (ISI) and the number of trials comprising an average on measures of the pitch-shift reflex. Pitch-shift stimuli were presented to vocalizing subjects with ISI of 5.0, 2.5, 1.0, and 0.5 s to determine if an increase in ISI altered response properties. With each ISI, measures of event-related averages of the first 10, 15, 20, or 30 pitch-shift reflex responses were compared to see if increases in the number of responses comprising an event-related average altered response properties. Measures of response latency, peak time, magnitude, and prevalence were obtained for all ISI and average conditions. While quantitative measures were similar across ISI and averaging conditions, we observed more instances of "non-responses" with averages of ten trials as well as at an ISI of 0.5 s. These findings suggest an ISI of 1.0 s and an average consisting of at least 15 trials produce optimal results. Future studies using these stimulus parameters may produce more reliable data due to the fivefold decrease in subject participation time and a concomitant decrease in fatigue, boredom, and inattention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.