Background: The purpose of this study was to build radiogenomics models from texture signatures derived from computed tomography (CT) and 18F-FDG PET-CT (FDG PET-CT) images of non-small cell lung cancer (NSCLC) with and without epidermal growth factor receptor ( EGFR) mutations. Methods: Fifty patients diagnosed with NSCLC between 2011 and 2015 and with known EGFR mutation status were retrospectively identified. Texture features extracted from pretreatment CT and FDG PET-CT images by manual contouring of the primary tumor were used to develop multivariate logistic regression (LR) models to predict EGFR mutations in exon 19 and exon 20. Results: An LR model evaluating FDG PET-texture features was able to differentiate EGFR mutant from wild type with an area under the curve (AUC), sensitivity, specificity, and accuracy of 0.87, 0.76, 0.66, and 0.71, respectively. The model derived from CT texture features had an AUC, sensitivity, specificity, and accuracy of 0.83, 0.84, 0.73, and 0.78, respectively. FDG PET-texture features that could discriminate between mutations in EGFR exon 19 and 21 demonstrated AUC, sensitivity, specificity, and accuracy of 0.86, 0.84, 0.73, and 0.78, respectively. Based on CT texture features, the AUC, sensitivity, specificity, and accuracy were 0.75, 0.81, 0.69, and 0.75, respectively. Conclusion: Non-small cell lung cancer texture analysis using FGD-PET and CT images can identify tumors with mutations in EGFR. Imaging signatures could be valuable for pretreatment assessment and prognosis in precision therapy.
Objectives: This study aimed to investigate changes in three intrinsic functional connectivity networks (IFCNs; default mode network [DMN], salience network [SN], and task-positive network [TPN]) in individuals who had sustained a mild traumatic brain injury (mTBI).Methods: Resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired from 27 mTBI patients with persistent postconcussive symptoms, along with 26 age-and sex-matched controls. These individuals were recruited from a Level-1 trauma center, at least 3 months after a traumatic episode. IFCNs were established based on seed-to-voxel, region-of-interest (ROI) to ROI, and independent component analyses (ICA). Subsequently, we analyzed the relationship between functional connectivity and postconcussive symptoms.Results: Seed-to-voxel analysis of rs-fMRI demonstrated decreased functional connectivity in the right lateral parietal lobe, part of the DMN, and increased functional connectivity in the supramarginal gyrus, part of the SN. Our TPN showed both hypoand hyperconnectivity dependent on seed location. Within network hypoconnectivity was observed in the visual network also using group comparison. Using an ICA, we identified altered network functional connectivity in regions within four IFCNs (sensorimotor, visual, DMN, and dorsal attentional). A significant negative correlation between dorsal attentional network connectivity and behavioral symptoms score was also found. Conclusions:Our findings indicate that rs-fMRI may be of use clinically in order to assess disrupted functional connectivity among IFCNs in mTBI patients. Improved mTBI diagnostic and prognostic information could be especially relevant for athletes looking to safely return to play, as well for individuals from the general population with persistent postconcussive symptoms months after injury, who hope to resume activity.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Background The personalization of oncologic treatment using radiomic signatures is mounting in nasopharyngeal carcinoma (NPC). We ascertain the predictive ability of 3D volumetric magnetic resonance imaging (MRI) texture features on NPC disease recurrence. Methods A retrospective study of 58 patients with NPC undergoing primary curative-intent treatment was performed. Forty-two image texture features were extracted from pre-treatment MRI in addition to clinical factors. A multivariate logistic regression was used to model the texture features. A receiver operating characteristic curve on 100 bootstrap samples was used to maximize generalizability to out-of-sample data. A Cox proportional model was used to predict disease recurrence in the final model. Results A total of 58 patients were included in the study. MRI texture features predicted disease recurrence with an area under the curve (AUC), sensitivity, and specificity of 0.79, 0.73, and 0.71, respectively. Loco-regional recurrence was predicted with AUC, sensitivity, and specificity of 0.82, 0.73 and 0.74 respectively while prediction for distant metastasis had an AUC, sensitivity, and specificity of 0.92, 0.79 and 0.84, respectively. Texture features on MRI had a hazard ratio of 4.37 (95% confidence interval 1.72–20.2) for disease recurrence when adjusting for age, sex, smoking, and TNM staging. Conclusion Texture features on MRI are independent predictors of NPC recurrence in patients undergoing curative-intent treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.