Yeast genes were isolated that are required for restoring the osmotic gradient across the cell membrane in response to increased external osmolarity. Two of these genes, HOG1 and PBS2, encode members of the mitogen-activated protein kinase (MAP kinase) and MAP kinase kinase gene families, respectively. MAP kinases are activated by extracellular ligands such as growth factors and function as intermediate kinases in protein phosphorylation cascades. A rapid, PBS2-dependent tyrosine phosphorylation of HOG1 protein occurred in response to increases in extracellular osmolarity. These data define a signal transduction pathway that is activated by changes in the osmolarity of the extracellular environment.
The HOG signal pathway of the yeast Saccharomyces cerevisiae is defined by the PBS2 and HOG1 genes encoding members of the MAP kinase kinase and of the MAP kinase family, respectively. Mutations in this pathway (deletions of PBS2 or HOG1, or point mutations in HOG1) almost completely abolish the induction of transcription by osmotic stress that is mediated by stress response elements (STREs). We have demonstrated previously that STREs also mediate induction of transcription by heat shock, nitrogen starvation and oxidative stress. This study shows that they are also activated by low external pH, sorbate, benzoate or ethanol stress. Induction by these other stress signals appears to be HOG pathway independent. HOG1‐dependent osmotic induction of transcription of the CTT1 gene encoding the cytosolic catalase T occurs in the presence of a protein synthesis inhibitor and can be detected rapidly after an increase of tyrosine phosphorylation of Hog1p triggered by high osmolarity. Consistent with a role of STREs in the induction of stress resistance, a number of other stress protein genes (e.g. HSP104) are regulated like CTT1. Furthermore, catalase T was shown to be important for viability under severe osmotic stress, and heat shock was demonstrated to provide cross‐protection against osmotic stress.
The yeast osmotic stress signaling network has provided fundamental insight into eukaryotic stress signaling and environmental adaptation.
The yeast Saccharomyces cerevisiae has a genetic program for selecting and assembling a bud site on the cell cortex. Yeast cells confine their growth to the emerging bud, a process directed by cortical patches of actin filaments within the bud. We have investigated how cells regulate budding in response to osmotic stress, focusing on the role of the high osmolarity glycerol response (HOG) pathway in mediating this regulation. An increase in external osmolarity induces a growth arrest in which actin filaments are lost from the bud. This is followed by a recovery phase in which actin filaments return to their original locations and growth of the original bud resumes. After recovery from osmotic stress, haploid cells retain an axial pattern of bud site selection while diploids change their bipolar budding pattern to an increased bias for forming a bud on the opposite side of the cell from the previous bud site. Mutants lacking the mitogen-activated protein (MAP) kinase encoded by HOG1 or the MAP kinase kinase encoded by PBS2 (previously HOG4) show a similar growth arrest after osmotic stress. However, in the recovery phase, the mutant cells (a) do not restart growth of the original bud but rather start a new bud, (b) fail to restore actin filaments to the original bud but move them to the new one, and (c) show a more random budding pattern. These defects are elicited by an increase in osmolarity and not by other environmental stresses (e.g., heat shock or change in carbon source) that also cause a temporary growth arrest and shift in actin distribution. Thus, the HOG pathway is required for repositioning of the actin cytoskeleton and the normal spatial patterns of cell growth after recovery from osmotic stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.