We present the development and performance characterisation of a novel structured illumination microscope (SIM) in which the grating pattern is generated using two optical beams controlled via 2 micro-electro-mechanical system (MEMS) three-axis scanning micromirrors. The implementation of MEMS micromirrors to accurately and repeatably control angular, radial and phase positioning delivers flexible control of the fluorescence excitation illumination, with achromatic beam delivery through the same optical path, reduced spatial footprint and cost-efficient integration being further benefits. Our SIM architecture enables the direct implementation of multi-color imaging in a compact and adaptable package. The two-dimensional SIM system approach is enabled by a pair of 2 mm aperture electrostatically actuated three-axis micromirrors having static angular tilt motion along the x- and y-axes and static piston motion along the z-axis. This allows precise angular, radial and phase positioning of two optical beams, generating a fully controllable spatial interference pattern at the focal plane by adjusting the positions of the beam in the back-aperture of a microscope objective. This MEMS-SIM system was applied to fluorescent bead samples and cell specimens, and was able to obtain a variable lateral resolution improvement between 1.3 and 1.8 times the diffraction limited resolution.
In this work, we present the results of using a commercially available SLA printer for the fabrication of a range of designs of optical components. The optical properties are compared to off-the-shelf optics, including a detailed analysis of optical transmission, part uniformity and surface quality. A post-processing refinement step is introduced whose results are benchmarked against off-the-shelf polished glass lenses to exemplify sub-hundred nanometre surface uniformity with minimal surface defects, and transmission properties as high as 85% at 638 nm for a 1 mm thick optical block without antireflection coatings.
We present the development and performance characterisation of a novel structured illumination microscope (SIM) in which the grating pattern is generated using two optical beams controlled via 2 micro-electro-mechanical system (MEMS) three-axis scanning micromirrors. The implementation of MEMS micromirrors to accurately and repeatably control angular, radial and phase positioning delivers flexible control of the fluorescence excitation illumination, with achromatic beam delivery through the same optical path, reduced spatial footprint and cost-efficient integration being further benefits. Our SIM architecture enables the direct implementation of multi-colour imaging in a compact and adaptable package. The two-dimensional SIM system approach is enabled by a pair of 2 mm aperture electrostatically actuated three-axis micromirrors having static angular tilt motion along the x- and y-axes and static piston motion along the z-axis. This allows precise angular, radial and phase positioning of two optical beams, generating a fully controllable spatial interference pattern at the focal plane by adjusting the positions of the beam in the back-aperture of a microscope objective. This MEMS-SIM system was applied to fluorescent bead samples and cell specimens, and was able to obtain a variable lateral resolution improvement between 1.3 and 1.8 times the diffraction limited resolution.
We present the development and application of a novel structured illumination microscope (SIM) in which the grating pattern is generated using two optical beams controlled via two micro-electro-mechanical system (MEMS) 3D scanning micromirrors, each having static angular and piston control. This arrangement enables the generation of a fully controllable spatial interference pattern at the focal plane by adjusting the positions of the beams in the back-aperture of a high numerical aperture (NA) microscope objective. The utilization of MEMS micromirrors to control angular, radial and phase positioning for the structured illumination patterns has advantages of flexible control of the fluorescence excitation illumination, with achromatic beam delivery through the same optical path, reduced spatial footprint and cost-efficient integration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.