One approach used in the industry to improve the properties of polyethylene is to use multi-reactor with a single catalyst or multiple catalysts in a single reactor. In the latter case, two catalysts with distinct kinetics are selected to achieve the desired product properties. Such mixed catalyst systems enable tailored and advantageous properties at the cost of more challenging process control, because the ratio of the two catalysts serves as an additional manipulated variable. A fast method to estimate the ratio of active catalysts using headspace gas chromatography measurements is proposed here. In this method, a small perturbation in the feed rate is introduced to induce transient responses in the gas phase concentration. Ideally, with known responses from each individual catalyst, the active catalyst ratio can be estimated. To demonstrate this concept, a process model is developed in Aspen Plus. A set of dynamic simulation is performed to understand the responses of each catalyst and the mixed catalyst system, to changes in feed comonomer concentration. The results demonstrate that this method has significantly faster responses compared to feedback from bulk polymer properties and induces minimal process upset or product off-spec due to small perturbations in a short period of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.