DNA damage activates signaling pathways that lead to modification of local chromatin and recruitment of DNA repair proteins. Multiple DNA repair proteins having ubiquitin ligase activity are recruited to sites of DNA damage, where they ubiquitinate histones and other substrates. This DNA damage-induced histone ubiquitination is thought to play a critical role in mediating the DNA damage response. We now report that the polycomb protein BMI1 is rapidly recruited to sites of DNA damage, where it persists for more than 8 h. The sustained localization of BMI1 to damage sites is dependent on intact ATM and ATR and requires H2AX phosphorylation and recruitment of RNF8. BMI1 is required for DNA damage-induced ubiquitination of histone H2A at lysine 119. Loss of BMI1 leads to impaired repair of DNA double-strand breaks by homologous recombination and the accumulation of cells in G 2 /M. These data support a crucial role for BMI1 in the cellular response to DNA damage.The induction of a DNA break leads to activation of multiple signaling pathways that lead to local modification of chromatin structure and recruitment of DNA repair complexes (18,22,55). Histone H2AX is rapidly phosphorylated near sites of DNA breaks by ATM, ATR, and DNA-PK (39, 54) and can spread to encompass a region of chromatin covering several megabases (40, 41).H2AX phosphorylation facilitates the recruitment of other proteins, including MDC1 (52) and the E3 ubiquitin ligases RNF8 and RNF168, which in turn participate locally in the K63-linked polyubiquitination of histones H2A and H2AX (23,32,50,51). Polyubiquitinated K63-linked histones provide a recognition element that recruits RAP80 through its ubiquitin interaction motifs (28,49,56). RAP80 can then promote the recruitment of other DNA repair factors such as BRCA1 and Abraxas, which are essential for efficient repair. RNF8 and RNF168 function are also required for proper localization of 53BP1, although the exact mechanism is unclear (12,23,32,51). 53BP1 recruitment to regions of DNA damage is dependent upon its Tudor domains, which have been found to specifically interact with methylated histone residues (6, 24, 42). A model has been proposed in which RNF8-and RNF168-mediated ubiquitination of histones confers local changes in chromatin structure, leading to exposure of methylated lysine residues in core histones, allowing the subsequent recruitment of 53BP1 (50). Enzymes involved in deubiquitination, such as BRCC36, USP3, and USP28, are also critical for efficient DNA repair, demonstrating that a dynamic regulation of ubiquitin conjugation and hydrolysis is necessary for optimal DNA repair (37,46,47,61).Polycomb group proteins BMI1 and RING1B/RNF2 form an active heterodimer E3 ligase that catalyzes the monoubiquitination of histone H2A at Lysine 119. (7,8,44,53,57). This activity is important for BMI1-mediated transcriptional silencing during organism development and cellular differentiation (27,48,58). Ubiquitination of H2A at lysine 119 is also induced locally at sites of DNA damage, both at s...
BackgroundMicroRNA regulate mRNA levels in a tissue specific way, either by inducing degradation of the transcript or by inhibiting translation or transcription. Putative mRNA targets of microRNA identified from seed sequence matches are available in many databases. However, such matches have a high false positive rate and cannot identify tissue specificity of regulation.ResultsWe describe a simple method to identify direct mRNA targets of microRNA dysregulated in cancers from expression level measurements in patient matched tumor/normal samples. The word "direct" is used here in a strict sense to: a) represent mRNA which have an exact seed sequence match to the microRNA in their 3'UTR, b) the seed sequence match is strictly conserved across mouse, human, rat and dog genomes, c) the mRNA and microRNA expression levels can distinguish tumor from normal with high significance and d) the microRNA/mRNA expression levels are strongly and significantly anti-correlated in tumor and/or normal samples. We apply and validate the method using clear cell Renal Cell Carcinoma (ccRCC) and matched normal kidney samples, limiting our analysis to mRNA targets which undergo degradation of the mRNA transcript because of a perfect seed sequence match. Dysregulated microRNA and mRNA are first identified by comparing their expression levels in tumor vs normal samples. Putative dysregulated microRNA/mRNA pairs are identified from these using seed sequence matches, requiring that the seed sequence be conserved in human/dog/rat/mouse genomes. These are further pruned by requiring a strong anti-correlation signature in tumor and/or normal samples. The method revealed many new regulations in ccRCC. For instance, loss of miR-149, miR-200c and mir-141 causes gain of function of oncogenes (KCNMA1, LOX), VEGFA and SEMA6A respectively and increased levels of miR-142-3p, miR-185, mir-34a, miR-224, miR-21 cause loss of function of tumor suppressors LRRC2, PTPN13, SFRP1, ERBB4, and (SLC12A1, TCF21) respectively. We also found strong anti-correlation between VEGFA and the miR-200 family of microRNA: miR-200a*, 200b, 200c and miR-141. Several identified microRNA/mRNA pairs were validated on an independent set of matched ccRCC/normal samples. The regulation of SEMA6A by miR-141 was verified by a transfection assay.ConclusionsWe describe a simple and reliable method to identify direct gene targets of microRNA in any cancer. The constraints we impose (strong dysregulation signature for microRNA and mRNA levels between tumor/normal samples, evolutionary conservation of seed sequence and strong anti-correlation of expression levels) remove spurious matches and identify a subset of robust, tissue specific, functional mRNA targets of dysregulated microRNA.
Background: PARP activation at sites of DNA breaks leads to recruitment of chromatin remodeling enzymes such as ALC1. Results: TRIM33 associates with ALC1 after DNA damage and regulates its retention at DNA breaks. Conclusion: TRIM33 has a role in the PARP-dependent DNA damage response pathway. Significance: The role of TRIM33 in the DNA repair may contribute to its known tumor suppressor function.
Neuronal differentiation of the NG108-15 neuroblastoma-glioma hybrid cells is accompanied by a marked attenuation in the heat shock induction of the Hsp70-firefly luciferase reporter gene activity. Analysis of the amount and activation of heat shock factor 1, induction of mRNA hsp , and the synthesis and accumulation of heat shock proteins (HSPs) in the undifferentiated and differentiated cells suggest a transcriptional mechanism for this attenuation. Concomitant with a decreased induction of the 72-kDa Hsp70 protein in the differentiated cells, there is an increased abundance of the constitutive 73-kDa Hsc70, a protein known to function in vesicle trafficking. Assessment of sensitivity of the undifferentiated and differentiated cells against stressinduced cell death reveals a significantly greater vulnerability of the differentiated cells toward the cytotoxic effects of arsenite and glutamate/glycine. This study shows that changes in regulation of the HSP and HSC proteins are components of the neuronal cell differentiation program and that the attenuated induction of HSPs likely contributes to neuronal vulnerability whereas the increased expression of Hsc70 likely has a role in neural-specific functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.