This article introduces a method for computing weighted averages on spheres based on least squares minimization that respects spherical distance. We prove existence and uniqueness properties of the weighted averages, and give fast iterative algorithms with linear and quadratic convergence rates. Our methods are appropriate to problems involving averages of spherical data in meteorological, geophysical, and astronomical applications. One simple application is a method for smooth averaging of quaternions, which generalizes Shoemake's spherical linear interpolation.The weighted averages methods allow a novel method of defining Bézier and spline curves on spheres, which provides direct generalization of Bézier and B-spline curves to spherical spline curves. We present a fast algorithm for spline interpolation on spheres. Our spherical splines allow the use of arbitrary knot positions; potential applications of spherical splines include smooth quaternion curves for applications in graphics, animation, robotics, and motion planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.