TitleRapid inhibition of female sexual behavior by gonadotropin-inhibitory hormone (GnIH). Abstract Gonadotropin-releasing hormone (GnRH) is largely responsible for the initiation of sexual behaviors; one form of GnRH activates a physiological cascade causing gonadal growth and gonadal steroid feedback to the brain, and another form is thought to act as a neurotransmitter to enhance sexual receptivity. In contrast to GnRH, gonadotropin-inhibitory hormone (GnIH) inhibits gonadotropin release. The distribution of GnIH in the avian brain suggests that it has not only hypophysiotropic actions but also unknown behavioral actions. GnIH fibers are present in the median eminence (ME) and are in apparent contact with chicken GnRH (cGnRH)-I and -II neurons and fibers. In birds, cGnRH-I regulates pituitary gonadotropin release, whereas cGnRH-II enhances copulation solicitation in estradiol-primed females exposed to male song. In the present study, we determined the effects of GnIH administered centrally to female white-crowned sparrows. A physiological dose of GnIH reduced circulating LH and inhibited copulation solicitation, without affecting locomotor activity. Using rhodaminated GnIH, putative GnIH binding sites were seen in the ME close to GnRH-I fiber terminals and in the midbrain on or close to GnRH-II neurons. These data demonstrate direct effects of GnIH upon reproductive physiology and behavior, possibly via separate actions on two forms of GnRH.
Many young birds on the Arctic tundra are confronted by a challenging task: they must molt their feathers and accumulate fat stores for the autumn migration before climatic conditions deteriorate. Our understanding of the costs and constraints associated with these stages is extremely limited. We investigated post-juvenal molt and premigratory fattening in free-ranging juvenile White-crowned Sparrows (Zonotrichia leucophrys gambelii) on the Arctic tundra. We found evidence for trade-offs between premigratory fat accumulation and molt: heavily molting birds had significantly less fat. Birds increased the rate of fat accumulation as the season progressed, but we found no evidence of a similar increase in rate of molt. Using a controlled captive study to isolate the energetic costs of body feather replacement, we found no difference in fat or size-corrected mass of birds actively growing body feathers as compared to controls. Molting birds, however, consumed 17% more food than controls, suggesting a significant cost of body feather growth. Our results provide evidence of significant costs, constraints, and trade-offs associated with post-juvenal molt and premigratory fat accumulation in young Arctic birds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.