Gain-of function mutations in some genes underlie neurodegenerative conditions whereas loss-of-function mutations have distinct phenotypes. Such appears to be the case with the protein ataxin 1 (ATXN1), which forms a transcriptional repressor complex with capicua (CIC). Gain-of-function of the complex leads to neurodegeneration, but ATXIN1-CIC is also essential for survival. We set out to understand the functions of ATXN1-CIC in the developing forebrain and found that losing the complex results in hyperactivity, impaired learning and memory, and abnormal maturation and maintenance of upper layer cortical neurons. We also found that CIC modulates social interactions in the hypothalamus and medial amygdala. Informed by these neurobehavioral features in mouse mutants, we identified five patients with de novo heterozygous truncating mutations in CIC that share similar clinical features, including intellectual disability, attention deficit/hyperactivity disorder (ADHD), and autism spectrum disorder. Our study demonstrates that loss of ATXN1-CIC complexes causes a spectrum of neurobehavioral phenotypes.
Atypical food intake is a primary cause of obesity and other eating and metabolic disorders. Insight into the neural control of feeding has previously focused mainly on signalling mechanisms associated with the hypothalamus1-5, the major centre in the brain that regulates body weight homeostasis6,7. However, roles of non-canonical central nervous system signalling mechanisms in regulating feeding behaviour have been largely uncharacterized. Acetylcholine has long been proposed to influence feeding8-10 owing in part to the functional similarity between acetylcholine and nicotine, a known appetite suppressant. Nicotine is an exogenous agonist for acetylcholine receptors, suggesting that endogenous cholinergic signalling may play a part in normal physiological regulation of feeding. However, it remains unclear how cholinergic neurons in the brain regulate food intake. Here we report that cholinergic neurons of the mouse basal forebrain potently influence food intake and body weight. Impairment of cholinergic signalling increases food intake and results in severe obesity, whereas enhanced cholinergic signalling decreases food consumption. We found that cholinergic circuits modulate appetite suppression on downstream targets in the hypothalamus. Together our data reveal the cholinergic basal forebrain as a major modulatory centre underlying feeding behaviour.
SCA1 is an adult-onset, dominantly inherited neurodegenerative disease caused by expansion of a glutamine repeat tract in ATXN1. Although the precise function of ATXN1 remains elusive, it appears to play a role in transcriptional repression. We find that mutant ATXN1 suppresses transcription of the neurotrophic and angiogenic factor VEGF. We also show that genetic or pharmacologic replenishment of VEGF mitigates SCA1 pathogenesis, suggesting a novel therapeutic strategy for this incurable disease.
Cingulothalamic neurons develop topographic patterns of cue-elicited neuronal activity during discrimination learning. These patterns are context-related and are degraded by hippocampal lesions, suggesting that hippocampal modulation of cingulothalamic activity results in the expression of the patterns, which could promote the retrieval of context-appropriate responses and memories. This hypothesis was tested by training rabbits (Oryctolagus cuniculus) with fornix lesions concurrently on two discrimination tasks (approach and avoidance) in different contexts. Because the same conditioned stimuli were used for both tasks, contextual information was critical for overcoming intertask interference during concurrent task acquisition. The lesions degraded the topographic patterns and significantly impaired concurrent learning, suggesting that hippocampal-cingulothalamic interactions and the resulting topographic patterns are critical for processing contextual information needed to defeat interference.
Appetite is driven by nutritional state, environmental cues, mood, and reward pathways. Environmental cues strongly influence feeding behavior, as they can dramatically induce or diminish the drive to consume food despite homeostatic state. Here, we have uncovered an excitatory neuronal population in the basal forebrain that is activated by food-odor related stimuli, and potently drives hypophagia. Notably, we found that the basal forebrain directly integrates environmental sensory cues to govern feeding behavior, and that basal forebrain signaling, mediated through projections to the lateral hypothalamus, promotes selective avoidance of food and food-related stimuli. Together, these findings reveal a novel role for the excitatory basal forebrain in regulating appetite suppression through food avoidance mechanisms, highlighting a key function for this structure as a potent integrator of sensory information towards governing consummatory behaviors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.