An errorable car-following model is presented in this paper. The model was developed to predict the situational risk associated with distracted driving. To obtain longitudinal driving patterns, this paper analyzed and synthesized the NGSIM naturalistic driver and traffic database to identify essential driver behavior and characteristics. NGSIM data was modified according to data from cognitive psychology concepts to examine the probabilistic nature of distracted driving due to internal vehicle distractions. The errorable microscopic carfollowing model was developed and validated, which can be fully integrated with the naturalistic data and incorporate the probabilities of driver distraction. The proposed model predicts that distracted driving in congested conditions can result in crash rates 3.25 times that of normal driving conditions.
In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.