In an earlier paper, the author employed the thesis that baryons are Yang-Mills magnetic monopoles and that proton and neutron binding energies are determined based on their up and down current quark masses to predict a relationship among the electron and up and down quark masses within experimental errors and to obtain a very accurate relationship for nuclear binding energies generally and for the binding of 56Fe in particular. The free proton and neutron were understood to each contain intrinsic binding energies which confine their quarks, wherein some or most (never all) of this energy is released for binding when they are fused into composite nuclides. The purpose of this paper is to further advance this thesis by seeing whether it can explain the specific empirical binding energies of the light 1s nuclides, namely, 2H, 3H, 3He and 4He, with high precision. As the method to achieve this, we show how these 1s binding energies are in fact the components of inner and outer tensor products of Yang-Mills matrices which are implicit in the expressions for these intrinsic binding energies. The result is that the binding energies for the 4He, 3He and 3H nucleons are respectively, independently, explained to less than four parts in one million, four parts in 100,000, and seven parts in one million, all in AMU. Further, we are able to exactly relate the neutron minus proton mass difference to a function of the up and down current quark masses, which in turn enables us to explain the 2H binding energy most precisely of all, to just over 8 parts in ten million. These energies have never before been theoretically explained with such accuracy, which leads to the conclusion that the underlying thesis provides the strongest theoretical explanation to date of what baryons are, and of how...
Based on the thesis that baryons including protons and neutrons are Yang-Mills magnetic monopoles which the author has previously developed and which has been confirmed by over half a dozen empirically-accurate predictions, we develop a GUT that is rooted in the SU(4) subgroups for the proton/electron and neutron/neutrino which were used as the basis for these predictions. The SU(8) GUT group so-developed leads following three stages of symmetry breaking to all known phenomenology including a neutrino that behaves differently from other fermions, lepto-quark separation, replication of fermions into exactly three generations, the Cabibbo mixing of those generations, weak interactions which are left-chiral, and all four of the gravitational, strong, weak, and electromagnetic interactions. The next steps based on this development will be to calculate the masses and energies associated with the vacuum terms of the Lagrangian, to see if additional empirical confirmations can be achieved, especially for the proton and neutron and the fermion masses.
The rank-3 antisymmetric tensors which are the magnetic monopoles of SU(N) Yang–Mills gauge theory dynamics, unlike their counterparts in Maxwell’s U(1) electrodynamics, are non-vanishing, and do permit a net flux of Yang–Mills analogs to the magnetic field through closed spatial surfaces. When electric source currents of the same Yang–Mills dynamics are inverted and their fermions inserted into these Yang–Mills monopoles to create a system, this system in its unperturbed state contains exactly three fermions due to the monopole rank-3 and its three additive field strength gradient terms in covariant form. So to ensure that every fermion in this system occupies an exclusive quantum state, the Exclusion Principle is used to place each of the three fermions into the fundamental representation of the simple gauge group with an SU(3) symmetry. After the symmetry of the monopole is broken to make this system indivisible, the gauge bosons inside the monopole become massless, the SU(3) color symmetry of the fermions becomes exact, and a propagator is established for each fermion. The monopoles then have the same antisymmetric color singlet wavefunction as a baryon, and the field quanta of the magnetic fields fluxing through the monopole surface have the same symmetric color singlet wavefunction as a meson. Consequently, we are able to identify these fermions with colored quarks, the gauge bosons with gluons, the magnetic monopoles with baryons, and the fluxing entities with mesons, while establishing that the quarks and gluons remain confined and identifying the symmetry breaking with hadronization. Analytic tools developed along the way are then used to fill the Yang–Mills mass gap.
The rank-3 antisymmetric tensors which are the magnetic monopoles of SU(N) Yang-Mills gauge theory dynamics, unlike their counterparts in Maxwell’s U(1) electrodynamics, are non-vanishing, and do permit a net flux of Yang-Mills analogs to the magnetic field through closed spatial surfaces. When electric source currents of the same Yang-Mills dynamics are inverted and their fermions inserted into these Yang-Mills monopoles to create a system, this system in its unperturbed state contains exactly 3 fermions due to the monopole rank-3 and its 3 additive field strength gradient terms in covariant form. So to ensure that every fermion in this system occupies an exclusive quantum state, the Exclusion Principle is used to place each of the 3 fermions into the fundamental representation of the simple gauge group with an SU(3) symmetry. After the symmetry of the monopole is broken to make this system indivisible, the gauge bosons inside the monopole become massless, the SU(3) color symmetry of the fermions becomes exact, and a propagator is established for each fermion. The monopoles then have the same antisymmetric color singlet wavefunction as a baryon, and the field quanta of the magnetic fields fluxing through the monopole surface have the same symmetric color singlet wavefunction as a meson. Consequently, we are able to identify these fermions with colored quarks, the gauge bosons with gluons, the magnetic monopoles with baryons, and the fluxing entities with mesons, while establishing that the quarks and gluons remain confined and identifying the symmetry breaking with hadronization. Analytic tools developed along the way are then used to fill the Yang-Mills mass gap.
The spatial resolution measurement limitation of the position-momentum uncertainty principle is shown to mathematically originate from the Bekenstein entropy bound and the associated second law of thermodynamics, as a special case in which a statistical thermodynamic distribution of energies is specialized to a fixed, definite probe energy equal to the average energy of that distribution. This is used in combination with the Wein displacement law to predict an ultraviolet cutoff for Planck blackbody radiation at about ⅛ of the Wein peak. A new UV photon counting experiment is proposed to test for this. A physical understanding of these results may be provided by a UV-complete, intelligible theory of general relativistic quantum mechanics in which the observation of a blackbody spectrum is simply a remote observation of Hawking radiation emitted from black hole fluctuations in the gravitational vacuum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.