BackgroundCancer stem cells (CSCs) can proliferate and self-renew extensively due to their ability to express anti-apoptotic and drug resistant proteins, thus sustaining tumor growth. Therefore, the strategy to eradicate CSCs might have significant clinical implications. The objectives of this study were to examine the molecular mechanisms by which resveratrol inhibits stem cell characteristics of pancreatic CSCs derived from human primary tumors and KrasG12D transgenic mice.Methodology/Principal FindingsHuman pancreatic CSCs (CD133+CD44+CD24+ESA+) are highly tumorigenic and form subcutaneous tumors in NOD/SCID mice. Human pancreatic CSCs expressing high levels of CD133, CD24, CD44, ESA, and aldehyde dehydrogenase also express significantly more Nanog, Oct-4, Notch1, MDR1 and ABCG2 than normal pancreatic tissues and primary pancreatic cancer cells. Similarly, CSCs from KrasG12D mice express significantly higher levels of Nanog and Oct-4 than pancreatic tissues from Pdx-Cre mice. Resveratrol inhibits the growth (size and weight) and development (PanIN lesions) of pancreatic cancer in KrasG12D mice. Resveratrol inhibits the self-renewal capacity of pancreatic CSCs derived from human primary tumors and KrasG12D mice. Resveratrol induces apoptosis by activating capase-3/7 and inhibiting the expression of Bcl-2 and XIAP in human CSCs. Resveratrol inhibits pluripotency maintaining factors (Nanog, Sox-2, c-Myc and Oct-4) and drug resistance gene ABCG2 in CSCs. Inhibition of Nanog by shRNA enhances the inhibitory effects of resveratrol on self-renewal capacity of CSCs. Finally, resveratrol inhibits CSC's migration and invasion and markers of epithelial-mesenchymal transition (Zeb-1, Slug and Snail).Conclusions/SignificanceThese data suggest that resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. In conclusion, resveratrol can be used for the management of pancreatic cancer.
Multiple lines of evidence suggest that the Sonic Hedgehog (Shh) signaling pathway is aberrantly reactivated in pancreatic cancer stem cells (CSCs). The objectives of this study were to examine the molecular mechanisms by which GANT-61 (Gli transcription factor inhibitor) regulates stem cell characteristics and tumor growth. Effects of GANT-61 on CSC’s viability, spheroid formation, apoptosis, DNA-binding and transcriptional activities, and epithelial-mesenchymal transition (EMT) were measured. Humanized NOD/SCID/IL2Rgammanull mice were used to examine the effects of GANT-61 on CSC’s tumor growth. GANT-61 inhibited cell viability, spheroid formation, and Gli-DNA binding and transcriptional activities, and induced apoptosis by activation of caspase-3 and cleavage of Poly-ADP ribose Polymerase (PARP). GANT-61 increased the expression of TRAIL-R1/DR4, TRAIL-R2/DR5 and Fas, and decreased expression of PDGFRα and Bcl-2. GANT-61 also suppressed EMT by up-regulating E-cadherin and inhibiting N-cadherin and transcription factors Snail, Slug and Zeb1. In addition, GANT-61 inhibited pluripotency maintaining factors Nanog, Oct4, Sox-2 and cMyc. Suppression of both Gli1 plus Gli2 by shRNA mimicked the changes in cell viability, spheroid formation, apoptosis and gene expression observed in GANT-61-treated pancreatic CSCs. Furthermore, GANT-61 inhibited CSC tumor growth which was associated with up-regulation of DR4 and DR5 expression, and suppression of Gli1, Gli2, Bcl-2, CCND2 and Zeb1 expression in tumor tissues derived from NOD/SCID IL2Rγ null mice. Our data highlight the importance of Shh pathway for self-renewal and metastasis of pancreatic CSCs, and also suggest Gli as a therapeutic target for pancreatic cancer in eliminating CSCs.
Cancer stem cells (CSCs) play major roles in cancer initiation, progression, and metastasis. It is evident from growing reports that PI3K/Akt/mTOR and Sonic Hedgehog (Shh) signaling pathways are aberrantly reactivated in pancreatic CSCs. Here, we examined the efficacy of combining NVP-LDE-225 (PI3K/mTOR inhibitor) and NVP-BEZ-235 (Smoothened inhibitor) on pancreatic CSCs characteristics, microRNA regulatory network, and tumor growth. NVP-LDE-225 co-operated with NVP-BEZ-235 in inhibiting pancreatic CSC's characteristics and tumor growth in mice by acting at the level of Gli. Combination of NVP-LDE-225 and NVP-BEZ-235 inhibited self-renewal capacity of CSCs by suppressing the expression of pluripotency maintaining factors Nanog, Oct-4, Sox-2 and c-Myc, and transcription of Gli. NVP-LDE-225 co-operated with NVP-BEZ-235 to inhibit Lin28/Let7a/Kras axis in pancreatic CSCs. Furthermore, a superior interaction of these drugs was observed on spheroid formation by pancreatic CSCs isolated from Pankras/p53 mice. The combination of these drugs also showed superior effects on the expression of proteins involved in cell proliferation, survival and apoptosis. In addition, NVP-LDE-225 co-operated with NVP-BEZ-235 in inhibiting EMT through modulation of cadherin, vimentin and transcription factors Snail, Slug and Zeb1. In conclusion, these data suggest that the combined inhibition of PI3K/Akt/mTOR and Shh pathways may be beneficial for the treatment of pancreatic cancer.
Despite controversies on the potential of hematopoietic stem cells (HSCs) to promote tissue repair, we previously showed that HSC transplantation could correct cystinosis, a multi-systemic lysosomal storage disease, caused by a defective lysosomal membrane cystine transporter, cystinosin (CTNS). Addressing the cellular mechanisms, we here report vesicular cross-correction after HSC differentiation into macrophages. Upon co-culture with cystinotic fibroblasts, macrophages produced tunneling nanotubes (TNTs) allowing transfer of cystinosin-bearing lysosomes into Ctns-deficient cells, which exploited the same route to retrogradely transfer cystine-loaded lysosomes to macrophages, providing a bidirectional correction mechanism. TNT formation was enhanced by contact with diseased cells. In vivo, HSCs grafted to cystinotic kidneys also generated nanotubular extensions resembling invadopodia that crossed the dense basement membranes and delivered cystinosin into diseased proximal tubular cells. This is the first report of correction of a genetic lysosomal defect by bidirectional vesicular exchange via TNTs and suggests broader potential for HSC transplantation for other disorders due to defective vesicular proteins.
MicroRNAs are endogenous small non-coding RNAs that regulate gene expression and cancer development. A rare population of hepatocellular cancer stem cells (HSCs) holds the extensive proliferative and self-renewal potential necessary to form a liver tumour. We postulated that specific transcriptional factors might regulate the expression of microRNAs and subsequently modulate the expression of gene products involved in phenotypic characteristics of HSCs. We evaluated the expression of microRNA in human HSCs by microarray profiling, and defined the target genes and functional effects of two groups of microRNA regulated by IL-6 and transcriptional factor Twist. A subset of highly chemoresistant and invasive HSCs was screened with aberrant expressions of cytokine IL-6 and Twist. We demonstrated that conserved let-7 and miR-181 family members were up-regulated in HSCs by global microarray-based microRNA profiling followed by validation with real-time polymerase chain reaction. Importantly, inhibition of let-7 increases the chemosensitivity of HSCs to sorafenib and doxorubicin whereas silencing of miR-181 led to a reduction in HSCs motility and invasion. Knocking down IL-6 and Twist in HSCs significantly reduced let-7 and miR-181 expression and subsequently inhibited chemoresistance and cell invasion. We showed that let-7 directly targets SOCS-1 and caspase-3, whereas miR-181 directly targets RASSF1A, TIMP3 as well as nemo-like kinase (NLK). In conclusion, alterations of IL-6- and Twist-regulated microRNA expression in HSCs play a part in tumour spreading and responsiveness to chemotherapy. Our results define a novel regulatory mechanism of let-7/miR-181s suggesting that let-7 and miR-181 may be molecular targets for eradication of hepatocellular malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.