Our results demonstrate that analyzing the lexical features of concepts in non-lattice subgraphs is an effective approach for auditing SNOMED CT.
Objective The Unified Medical Language System (UMLS) integrates various source terminologies to support interoperability between biomedical information systems. In this article, we introduce a novel transformation-based auditing method that leverages the UMLS knowledge to systematically identify missing hierarchical IS-A relations in the source terminologies. Materials and Methods Given a concept name in the UMLS, we first identify its base and secondary noun chunks. For each identified noun chunk, we generate replacement candidates that are more general than the noun chunk. Then, we replace the noun chunks with their replacement candidates to generate new potential concept names that may serve as supertypes of the original concept. If a newly generated name is an existing concept name in the same source terminology with the original concept, then a potentially missing IS-A relation between the original and the new concept is identified. Results Applying our transformation-based method to English-language concept names in the UMLS (2019AB release), a total of 39 359 potentially missing IS-A relations were detected in 13 source terminologies. Domain experts evaluated a random sample of 200 potentially missing IS-A relations identified in the SNOMED CT (U.S. edition) and 100 in Gene Ontology. A total of 173 of 200 and 63 of 100 potentially missing IS-A relations were confirmed by domain experts, indicating that our method achieved a precision of 86.5% and 63% for the SNOMED CT and Gene Ontology, respectively. Conclusions Our results showed that our transformation-based method is effective in identifying missing IS-A relations in the UMLS source terminologies.
Objective SNOMED CT is the largest clinical terminology worldwide. Quality assurance of SNOMED CT is of utmost importance to ensure that it provides accurate domain knowledge to various SNOMED CT-based applications. In this work, we introduce a deep learning-based approach to uncover missing is-a relations in SNOMED CT. Materials and Methods Our focus is to identify missing is-a relations between concept-pairs exhibiting a containment pattern (ie, the set of words of one concept being a proper subset of that of the other concept). We use hierarchically related containment concept-pairs as positive instances and hierarchically unrelated containment concept-pairs as negative instances to train a model predicting whether an is-a relation exists between 2 concepts with containment pattern. The model is a binary classifier leveraging concept name features, hierarchical features, enriched lexical attribute features, and logical definition features. We introduce a cross-validation inspired approach to identify missing is-a relations among all hierarchically unrelated containment concept-pairs. Results We trained and applied our model on the Clinical finding subhierarchy of SNOMED CT (September 2019 US edition). Our model (based on the validation sets) achieved a precision of 0.8164, recall of 0.8397, and F1 score of 0.8279. Applying the model to predict actual missing is-a relations, we obtained a total of 1661 potential candidates. Domain experts performed evaluation on randomly selected 230 samples and verified that 192 (83.48%) are valid. Conclusions The results showed that our deep learning approach is effective in uncovering missing is-a relations between containment concept-pairs in SNOMED CT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.