Transforming growth factor beta (TGF-β) has become one of the most widely utilized mediators of engineered cartilage growth. It is typically exogenously supplemented in the culture medium in its active form, with the expectation that it will readily transport into tissue constructs through passive diffusion and influence cellular biosynthesis uniformly. The results of this investigation advance three novel concepts regarding the role of TGF-β in cartilage tissue engineering that have important implications for tissue development. First, through the experimental and computational analysis of TGF-β concentration distributions, we demonstrate that, contrary to conventional expectations, media-supplemented exogenous active TGF-β exhibits a pronounced concentration gradient in tissue constructs, resulting from a combination of high-affinity binding interactions and a high cellular internalization rate. These gradients are sustained throughout the entire culture duration, leading to highly heterogeneous tissue growth; biochemical and histological measurements support that while biochemical content is enhanced up to 4-fold at the construct periphery, enhancements are entirely absent beyond 1 mm from the construct surface. Second, construct-encapsulated chondrocytes continuously secrete large amounts of endogenous TGF-β in its latent form, a portion of which undergoes cell-mediated activation and enhances biosynthesis uniformly throughout the tissue. Finally, motivated by these prior insights, we demonstrate that the alternative supplementation of additional exogenous latent TGF-β enhances biosynthesis uniformly throughout tissue constructs, leading to enhanced but homogeneous tissue growth. This novel demonstration suggests that latent TGF-β supplementation may be utilized as an important tool for the translational engineering of large cartilage constructs that will be required to repair the large osteoarthritic defects observed clinically.
A growing body of research has highlighted the role that mechanical forces play in the activation of the latent TGF-β in biological tissues. In synovial joints, it has recently been demonstrated that the mechanical shearing of synovial fluid, induced during joint motion, rapidly activates a large fraction of its soluble latent TGF-β content. Based on this observation, the primary hypothesis of the current study is that the mechanical deformation of articular cartilage, induced by dynamic joint motion, can similarly activate the large stores of latent TGF-β bound to the tissue extracellular matrix (ECM). Here, devitalized deep zone articular cartilage cylindrical explants (n=84) were subjected to continuous dynamic mechanical loading (low strain: ±2% or high strain: ±7.5% at 0.5 Hz) for up to 15 h or maintained unloaded. TGF-β activation was measured in these samples over time while accounting for the active TGF-β that remains bound to the cartilage ECM. Results indicate that TGF-β1 is present in cartilage at high levels (68.5±20.6 ng/mL) and resides predominantly in the latent form (>98% of total). Under dynamic loading, active TGF-β1 levels did not statistically increase from the initial value nor the corresponding unloaded control values for any test, indicating that physiologic dynamic compression of cartilage is unable to directly activate ECM-bound latent TGF-β purely mechanical pathways and leading us to reject the hypothesis of this study. These results suggest that deep zone articular chondrocytes must alternatively obtain access to active TGF-β through chemical-mediated activation and further suggest that mechanical deformation is unlikely to directly activate the ECM-bound latent TGF-β of various other tissues, such as muscle, ligament, and tendon.
The mechanics of biological fluids is an important topic in biomechanics, often requiring the use of computational tools to analyze problems with realistic geometries and material properties. This study describes the formulation and implementation of a finite element framework for computational fluid dynamics (CFD) in FEBio, a free software designed to meet the computational needs of the biomechanics and biophysics communities. This formulation models nearly incompressible flow with a compressible isothermal formulation that uses a physically realistic value for the fluid bulk modulus. It employs fluid velocity and dilatation as essential variables: The virtual work integral enforces the balance of linear momentum and the kinematic constraint between fluid velocity and dilatation, while fluid density varies with dilatation as prescribed by the axiom of mass balance. Using this approach, equal-order interpolations may be used for both essential variables over each element, contrary to traditional mixed formulations that must explicitly satisfy the inf-sup condition. The formulation accommodates Newtonian and non-Newtonian viscous responses as well as inviscid fluids. The efficiency of numerical solutions is enhanced using Broyden's quasi-Newton method. The results of finite element simulations were verified using well-documented benchmark problems as well as comparisons with other free and commercial codes. These analyses demonstrated that the novel formulation introduced in FEBio could successfully reproduce the results of other codes. The analogy between this CFD formulation and standard finite element formulations for solid mechanics makes it suitable for future extension to fluid-structure interactions (FSIs).
Pulse wave imaging (PWI) is an ultrasound-based method that allows spatiotemporal mapping of the arterial pulse wave propagation, from which the local pulse wave velocity (PWV) can be derived. Recent reports indicate that PWI can help the assessment of atherosclerotic plaque composition and mechanical properties. However, the effect of the atherosclerotic plaque's geometry and mechanics on the arterial wall distension and local PWV remains unclear. In this study we investigated the accuracy of a finite element (FE) fluid-structure interaction (FSI) approach to predict the velocity of a pulse wave propagating through a stenotic artery with an asymmetrical plaque, as quantified with PWI method. Experiments were designed to compare FE-FSI modeling of the pulse wave propagation through a stenotic artery against PWI obtained with manufactured phantom arteries made of PVA material. FSI-generated spatiotemporal maps were used to estimate PWV at the plaque region and compare it to the experimental results. Velocity of the pulse wave propagation and magnitude of the wall distension were correctly predicted with the FE analysis. In addition, findings indicate that a plaque with a high degree of stenosis (>70%) attenuates the propagation of the pulse pressure wave. Results of this study support the validity of the FE-FSI methods to investigate the effect of arterial wall structural and mechanical properties on the pulse wave propagation. This modeling method can help to guide the optimization of PWI to characterize plaque properties and substantiate clinical findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.