An evaluated database of whole body in vivo biotransformation rate estimates in fish was used to develop a model for predicting the primary biotransformation half-lives of organic chemicals. The estimated biotransformation rates were converted to half-lives and divided into a model development set (n=421) and an external validation set (n=211) to test the model. The model uses molecular substructures similar to those of other biodegradation models. The biotransformation half-life predictions were calculated based on multiple linear regressions of development set data against counts of 57 molecular substructures, the octanol-water partition coefficient, and molar mass. The coefficient of determination (r2) for the development set was 0.82, the cross-validation (leave-one-out coefficient of determination, q2) was 0.75, and the mean absolute error (MAE) was 0.38 log units (factor of 2.4). Results for the external validation of the model using an independent test set were r2 = 0.73 and MAE = 0.45 log units (factor of 2.8). For the development set, 68 and 95% of the predicted values were within a factor of 3 and a factor of 10 of the expected values, respectively. For the test (or validation) set, 63 and 90% of the predicted values were within a factor of 3 and a factor of 10 of the expected values, respectively. Reasons for discrepancies between model predictions and expected values are discussed and recommendations are made for improving the model. This model can predict biotransformation rate constants from chemical structure for screening level bioaccumulation hazard assessments, exposure and risk assessments, comparisons with other in vivo and in vitro estimates, and as a contribution to testing strategies that reduce animal usage.
Abstract-Two new predictive models for assessing a chemical's biodegradability in the Japanese Ministry of International Trade and Industry (MITI) ready biodegradation test have been developed. The new methods use an approach similar to that in the existing BIOWIN᭧ program, in which the probability of rapid biodegradation is estimated by means of multiple linear or nonlinear regression against counts of 36 chemical substructures (molecular fragments) plus molecular weight (mol wt). The data set used to develop the new models consisted of results (pass/no pass) from the MITI test for 884 discrete organic chemicals. This data set was first divided into randomly selected training and validation sets, and new coefficients were derived for the training set using the BIOWIN fragment library and mol wt as independent variables. Based on these results, the fragment library was then modified by deleting some fragments and adding or refining others, and the new set of independent variables (42 substructures and mol wt) was fit to the MITI data. The resulting linear and nonlinear regression models accurately classified 81% of the chemicals in an independent validation set. Like the established BIOWIN models, the MITI models are intended for use in chemical screening and in setting priorities for further review.
Whether or not a given chemical substance is readily biodegradable is an important piece of information in risk screening for both new and existing chemicals. Despite the relatively low cost of Organization for Economic Cooperation and Development tests, data are often unavailable and biodegradability must be estimated. In this paper, we focus on the predictive value of selected Biowin models and model batteries using Bayesian analysis. Posterior probabilities, calculated based on performance with the model training sets using Bayes' theorem, were closely matched by actual performance with an expanded set of 374 premanufacture notice (PMN) substances. Further analysis suggested that a simple battery consisting of Biowin3 (survey ultimate biodegradation model) and Biowin5 (Ministry of International Trade and Industry [MITI] linear model) would have enhanced predictive power in comparison to individual models. Application of the battery to PMN substances showed that performance matched expectation. This approach significantly reduced both false positives for ready biodegradability and the overall misclassification rate. Similar results were obtained for a set of 63 pharmaceuticals using a battery consisting of Biowin3 and Biowin6 (MITI nonlinear model). Biodegradation data for PMNs tested in multiple ready tests or both inherent and ready biodegradation tests yielded additional insights that may be useful in risk screening.
A new predictive model for determining quantitative primary biodegradation half-lives of individual petroleum hydrocarbons has been developed. This model uses a fragment-based approach similar to that of several other biodegradation models, such as those within the Biodegradation Probability Program (BIOWIN) estimation program. In the present study, a half-life in days is estimated using multiple linear regression against counts of 31 distinct molecular fragments. The model was developed using a data set consisting of 175 compounds with environmentally relevant experimental data that was divided into training and validation sets. The original fragments from the Ministry of International Trade and Industry BIOWIN model were used initially as structural descriptors and additional fragments were then added to better describe the ring systems found in petroleum hydrocarbons and to adjust for nonlinearity within the experimental data. The training and validation sets had r2 values of 0.91 and 0.81, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.