Monomer precursor flow was introduced at an oblique angle to the substrate at two locations during the initiated chemical vapor deposition (iCVD) process using a branched nozzle inlet extension. The polymerization of methacrylic acid was systematically studied as a function of the nozzle length and the monomer flow rate. Our experimental data showed the evolution of two distinct symmetrical thickness profiles as the flow rate and nozzle length increased. The maximum thickness moved downstream along the axes of both nozzles as the flow rate and nozzle length increased. Computational models were used to study the effects of the nozzle length and the monomer flow rate on the velocity profile within the reactor. Increasing the monomer flow rate and the nozzle length resulted in increases in the velocity profile ranges and the movement of the location of the maximum velocity and local minimum velocity associated with the stagnation point. These velocity data provided insight for explaining the trends found in the experimental results. The data demonstrate the ability to use a branched nozzle inlet extension to control the location of polymer deposition during the iCVD process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.