The recent multimessenger observation of the short gamma-ray burst (SGRB) GRB 170817A together with the gravitational wave (GW) event GW170817 provides evidence for the long-standing hypothesis associating SGRBs with binary neutron star (BNS) mergers. The nature of the remnant object powering the SGRB, which could have been either an accreting black hole (BH) or a long-lived magnetized neutron star (NS), is, however, still uncertain. General relativistic magnetohydrodynamic (GRMHD) simulations of the merger process represent a powerful tool to unravel the jet launching mechanism, but so far most simulations focused the attention on a BH as the central engine, while the long-lived NS scenario remains poorly investigated. Here, we explore the latter by performing a GRMHD BNS merger simulation extending up to ∼100 ms after merger, much longer than any previous simulation of this kind. This allows us to (i) study the emerging structure and amplification of the magnetic field and observe a clear saturation at magnetic energy Emag ∼ 10 51 erg, (ii) follow the magnetically supported expansion of the outer layers of the remnant NS and its evolution into an ellipsoidal shape without any surrounding torus, and (iii) monitor density, magnetization, and velocity along the axis, observing no signs of jet formation. We also argue that the conditions at the end of the simulation disfavor later jet formation on subsecond timescales if no BH is formed. Furthermore, we examine the rotation profile of the remnant, the conversion of rotational energy associated with differential rotation, the overall energy budget of the system, and the evolution of the GW frequency spectrum. Finally, we perform an additional simulation where we induce the collapse to a BH ∼70 ms after merger, in order to gain insights on the prospects for massive accretion tori in case of a late collapse. We find that a mass around ∼0.1 M remains outside the horizon, which has the potential to power a SGRB via the Blandford-Znajek mechanism when accreted.1 Hereafter, long-lived refers to remnants with lifetime 100 ms.
The observation of a radioactively powered kilonova associated with the first binary neutron star (BNS) merger detected in gravitational waves proved that these events are ideal sites for the production of heavy r-process elements. However, the physical origin of the ejected material responsible for the early (“blue”) and late (“red”) components of this kilonova is still debated. Here, we investigate the possibility that the early/blue kilonova originated from the magnetically driven baryon wind launched after merger by the metastable neutron star remnant. Exploiting a magnetized BNS merger simulation with over 250 ms of post-merger evolution, we can follow for the first time the full mass-ejection process up to its final decline. We find that the baryon wind carries ≃0.010–0.028 M ⊙ of unbound material, proving that the high mass estimated for the blue kilonova can be achieved. We also find expansion velocities of up to ∼0.2c, consistent with the lower end of the observational estimates, and we discuss possible effects neglected here that could further increase the final ejecta velocity. Overall, our results show that the magnetically driven baryon wind represents a viable channel to explain the blue kilonova.
The new era of multimessenger astrophysics requires the capability of studying different aspects of the evolution of compact objects. In particular, the merger of neutron star binaries is a strong source of gravitational waves and electromagnetic radiation, from radio to γ-rays, as demonstrated by the detection of GW170817 and its electromagnetic counterparts. In order to understand the physical mechanisms involved in such systems, it is necessary to employ fully general relativistic magnetohydrodynamic (GRMHD) simulations able to include the effects of a composition and temperature dependent equation of state describing neutron star matter as well as neutrino emission and reabsorption. Here, we present our new code named Spritz that solves the GRMHD equations in 3D Cartesian coordinates and on a dynamical spacetime. The code can support tabulated equations of state, taking into account finite temperature effects and allowing for the inclusion of neutrino radiation. In this first paper, we present the general features of the code and a series of tests performed in special and general relativity to assess the robustness of the basic GRMHD algorithms implemented. Among these tests, we also present the first comparison between a non-staggered and a staggered formulation of the vector potential evolution, which is used to guarantee the divergence-less character of the magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.