This paper deals with the study of interval-valued semiinfinite optimization problems with equilibrium constraints (ISOPEC) using convexificators. First, we formulate Wolfe-type dual problem for (ISOPEC) and establish duality results between the (ISOPEC) and the corresponding Wolfe-type dual under the assumption of $\partial ^{*} $
∂
∗
-convexity. Second, we formulate Mond–Weir-type dual problem and propose duality results between the (ISOPEC) and the corresponding Mond–Weir-type dual under the assumption of $\partial ^{*} $
∂
∗
-convexity, $\partial ^{*} $
∂
∗
-pseudoconvexity, and $\partial ^{*} $
∂
∗
-quasiconvexity.
The connection between generalized convexity and symmetry has been studied by many authors in recent years. Due to this strong connection, generalized convexity and symmetry have arisen as a new topic in the subject of inequalities. In this paper, we introduce the concept of interval-valued preinvex functions on the coordinates in a rectangle from the plane and prove Hermite–Hadamard type inclusions for interval-valued preinvex functions on coordinates. Further, we establish Hermite–Hadamard type inclusions for the product of two interval-valued coordinated preinvex functions. These results are motivated by the symmetric results obtained in the recent article by Kara et al. in 2021 on weighted Hermite–Hadamard type inclusions for products of coordinated convex interval-valued functions. Our established results generalize and extend some recent results obtained in the existing literature. Moreover, we provide suitable examples in the support of our theoretical results.
We introduce a new class of interval-valued preinvex functions termed as harmonically h-preinvex interval-valued functions. We establish new inclusion of Hermite–Hadamard for harmonically h-preinvex interval-valued function via interval-valued Riemann–Liouville fractional integrals. Further, we prove fractional Hermite–Hadamard-type inclusions for the product of two harmonically h-preinvex interval-valued functions. In this way, these findings include several well-known results and newly obtained results of the existing literature as special cases. Moreover, applications of the main results are demonstrated by presenting some examples.
In this paper, we introduce the notion of a strongly convex function with respect to two non-negative auxiliary functions on time scales. We establish several new dynamic inequalities for these classes of strongly convex functions. The results obtained in this paper are the generalization of the results of Rashid et al. (Mathematics, 7 (10), 956, 2019). Further, we discuss some special cases which may be deduced from our main results. Moreover, some examples of our main results are mentioned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.