Pressure dipoles are important long distance climate phenomena (teleconnection) characterized by pressure anomalies of the opposite polarity appearing at two different locations at the same time. Such dipoles have been proven important for understanding and explaining the variability in climate in many regions of the world, e.g. the El Niño Southern Oscillation (ENSO) climate phenomenon, which is described by opposite pressure anomalies between the west and east Pacific and is known to be responsible for precipitation and temperature anomalies worldwide. This paper presents a graph‐based approach called shared reciprocal nearest neighbor approach that considers only reciprocal positive and negative edges in the shared nearest neighbor graph to find the dipoles. One crucial aspect of our approach to the analysis of such networks is a careful treatment of negative correlations, whose proper consideration is critical for finding the dipoles. Further, our work shows the importance of modeling the time‐dependent patterns of the dipoles in a changing climate in order to better capture the impact of important climate phenomena on the globe. To show the utility of finding dipoles using our approach, we show that the data driven dynamic climate indices generated from our algorithm generally perform better than static indices formed from the fixed locations used by climate scientists in terms of capturing impact on global temperature and precipitation. Our approach can generate a single snapshot picture of all the dipole interconnections on the globe in a given dataset and thus makes it possible to study the changes in dipole interactions and movements. As teleconnections are crucial in the understanding of the global climate system, there is a pressing need to better understand the behavior and interactions of these atmospheric processes as well as to capture them precisely. Our systematic graph‐based approach to find the teleconnections in climate data is an attempt in that direction. © 2012 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 6: 158–179, 2013
Abstract. Extreme events such as heat waves, cold spells, floods, droughts, tropical cyclones, and tornadoes have potentially devastating impacts on natural and engineered systems and human communities worldwide. Stakeholder decisions about critical infrastructures, natural resources, emergency preparedness and humanitarian aid typically need to be made at local to regional scales over seasonal to decadal planning horizons. However, credible climate change attribution and reliable projections at more localized and shorter time scales remain grand challenges. Long-standing gaps include inadequate understanding of processes such as cloud physics and ocean-land-atmosphere interactions, limitations of physics-based computer models, and the importance of intrinsic climate system variability at decadal horizons. Meanwhile, the growing size and complexity of climate data from model simulations and remote sensors increases opportunities to address these scientific gaps. This perspectives article explores the possibility that physically cognizant mining of massive climate data may lead to significant advances in generating credible predictive insights about climate extremes and in turn translating them to actionable metrics and information for adaptation and policy. Specifically, we propose that data mining techniques geared towards extremes can help tackle the grand challenges in the development of interpretable climate projections, predictability, and uncertainty assessments. To be successful, scalable methods will need to handle what has been called "big data" to tease out elusive but robust statistics of extremes and change from what is ultimately small data. Physically based relationships (where available) and conceptual understanding (where appropriate) are needed to guide methods development and interpretation of results. Such approaches may be especially relevant in situations where computer models may not be able to fully encapsulate current process understanding, yet the wealth of data may offer additional insights. Large-scale interdisciplinary team efforts, involving domain experts and individual researchers who span disciplines, will be necessary to address the challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.