ObjectivesTo analyse the biological effects of a 1920 nm endovenous laser (EVL) on extra-fascial great saphenous vein (GSV) in vitro.MethodsA 10 cm length of a large tributary bypassing a hypoplastic segment of the GSV (sometimes called an “extra-fascial GSV”) was obtained during routine varicose vein surgery. The length was treated in five sections with different LEEDs (0 (control), 20, 40, 60, and 80 J/cm) with a 1920 nm EVL at 4W power, in a novel in vitro treatment model. The biological effects were assessed by histological staining of the samples for haematoxylin and eosin (HE) and Martius Scarlet Blue (MSB), and by immunofluorescent detection of p-p53 and VCAM-1.ResultsHistological analysis showed significant structural damage at LEEDs above 60 J/cm, especially in the intima and media, with the treatment at 80 J/cm causing perforation of the vein wall. In addition, there was a significant increase in p-p53 expression in treated tissue at 60 and 80 J/cm.ConclusionsUsing this ex vivo model, the results indicate that in vitro treatment with a 1920 nm EVL, at or above an LEED of 60 J/cm and 4 W power, causes significant vein wall cell death reaching deep into the media by a combination of direct thermal damage and apoptosis. A wavelength of 1920 nm appears to be effective for the endovenous ablation of truncal veins.
Background During sclerotherapy, it has been recommended to confirm intravenous placement of the needle by aspirating blood into the sclerosant syringe. This may inactivate some, or all of the sclerosant. Aims To quantify the volume of human blood needed to completely inactivate 1 ml of sodium tetradecyl sulphate, and comparing fresh blood and blood that has been stored in an ethylenediaminetetraacetic acid tube. Methods A series of manual titrations were carried out following a procedure developed at STD Pharmaceutical Products Ltd (Hereford, UK) and listed in the British Pharmacopeia. Three percent of sodium tetradecyl sulphate stock solutions were made with increasing volumes of blood and titrated against benzethonium chloride to determine the active concentration (% w/v) of sodium tetradecyl sulphate remaining in the solution. Results A calculated approximation showed 0.3 ml of blood is required to fully inactivate 1 ml of 3% sodium tetradecyl sulphate when made into a foam. A comparison was made between the use of fresh blood and blood stored in ethylenediaminetetraacetic acid tubes. Blood stored in ethylenediaminetetraacetic acid tubes showed more inactivation of sodium tetradecyl sulphate, but this was not significant at the P ≤ 0.05 level. Conclusion The data from our study have shown that a minimum of 0.3 ml of fresh blood is required to inactivate 1 ml of 3% sodium tetradecyl sulphate as a foam and it is not significantly affected by storing blood in an ethylenediaminetetraacetic acid tube. Our methodology suggests that during foam sclerotherapy treatment, blood should not be aspirated into the syringe to confirm position, and that ultrasound guidance is more appropriate for needle placement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.