Advances in the info and communication knowledge have led to the emergence of Internet of things (IoT). Internet of things (loT) is worthwhile to members, trade, and society seeing that it generates a broad range of services by interconnecting numerous devices and information objects. Throughout the interactions among the many ubiquitous things, security problems emerge as noteworthy, and it is significant to set up more suitable solution for security protection. Nonetheless, as loT devices have limited resource constraints to appoint strong protection mechanisms, they are vulnerable to sophisticated security attacks. For this reason, a sensible authentication mechanism that considers each useful resource constraints and safety is required. Our proposed scheme uses the standards of Elliptic Curve digital signature scheme and evaluates systematically the efficiency of our scheme and observes that our scheme with a smaller key size and lesser infrastructure performs on par with the prevailing schemes without compromising the security level.
PurposeThe mischievous nodes that defy the standard corrupt the exhibition of good nodes considerably. Therefore, an intrusion discovery mechanism should be included to the mobile ad-hoc network (MANET). In this paper, worm-hole and other destructive malignant attacks are propelled in MANET.Design/methodology/approachA wireless ad-hoc network also called as mobile ad-hoc network (MANET) is a gathering of hubs that utilizes a wireless channel to exchange information and coordinate together to establish information exchange among any pair of hubs, without any centralized structure. The security issue is a major difficulty while employing MANETs.FindingsConsequently, the attacks due to the malicious node activity are detected using Hybrid Reactive Search and Bat (HRSB) mechanism to prevent the mischievous nodes from entering the network beneath the untruthful information. Moreover, the attack detection rate and node energy are predicted for determining the lifetime of the node.Originality/valueThe simulation outcomes of the proposed HRSB technique are evaluated with the prevailing methods. The comparison studies have proven the efficacy of the current research model by attaining high attack detection rate and achieving more network lifetime.
With the internet today available at the user’s beck, and call data or Information Security plays a vital role. Confidentiality, Integrity, Availability, and Non-repudiation are the pillars of security on which every application on the web is based on. With these basic requirements the users also need the security in low resource constrained environments making it more challenging for the security experts to design secured cryptographic algorithms. Digital Signatures play a pivotal role in Authentication. They help in verifying the integrity of the data being exchanged. Elliptical curves are the strongest contenders in Digital Signatures, and much research is being done to enhance the method in many ways. The paper briefs a secured and improved ECDSA Elliptical Curve Digital Signature Algorithm which is an improved and secured version of the Digital Signature Algorithm.
<p>Image <span>encryption enables users to safely transmit digital photographs via a wireless medium while maintaining enhanced anonymity and validity. Numerous studies are being conducted to strengthen picture encryption systems. Elliptical curve cryptography (ECC) is an effective tool for safely transferring images and recovering them at the receiver end in asymmetric cryptosystems. This method's key generation generates a public and private key pair that is used to encrypt and decrypt a picture. They use a public key to encrypt the picture before sending it to the intended user. When the receiver receives the image, they use their private key to decrypt it. This paper proposes an ECC-dependent image encryption scheme utilizing an enhancement strategy based on the gravitational search algorithm (GSA) algorithm. The private key generation step of the ECC system uses a GSA-based optimization process to boost the efficiency of picture encryption. The image's output is used as a health attribute in the optimization phase, such as the peak signal to noise ratio (PSNR) value, which demonstrates the efficacy of the proposed approach. As comparison to the ECC method, it has been discovered that the suggested encryption scheme offers better optimal PSNR </span>values.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.