Current interferon-based therapy for hepatitis C virus (HCV) infection is inadequate, prompting a shift toward combinations of direct-acting antivirals (DAA) with the first protease-targeted drugs licensed in 2012. Many compounds are in the pipeline yet primarily target only three viral proteins, namely, NS3/4A protease, NS5B polymerase, and NS5A. With concerns growing over resistance, broadening the repertoire for DAA targets is a major priority. Here we describe the complete structure of the HCV p7 protein as a monomeric hairpin, solved using a novel combination of chemical shift and nuclear Overhauser effect (NOE)-based methods. This represents atomic resolution information for a full-length virus-coded ion channel, or “viroporin,” whose essential functions represent a clinically proven class of antiviral target exploited previously for influenza A virus therapy. Specific drug-protein interactions validate an allosteric site on the channel periphery and its relevance is demonstrated by the selection of novel, structurally diverse inhibitory small molecules with nanomolar potency in culture. Hit compounds represent a 10,000-fold improvement over prototypes, suppress rimantadine resistance polymorphisms at submicromolar concentrations, and show activity against other HCV genotypes. Conclusion: This proof-of-principle that structure-guided design can lead to drug-like molecules affirms p7 as a much-needed new target in the burgeoning era of HCV DAA. (Hepatology 2014;59:408–422)
Reverse transcriptase (RT) associated
ribonuclease H (RNase H) remains the only virally encoded enzymatic
function not targeted by current chemotherapy against human immunodeficiency
virus (HIV). Although numerous chemotypes have been reported to inhibit
HIV RNase H biochemically, few show significant antiviral activity
against HIV. We report herein the design, synthesis, and biological
evaluations of a novel variant of 2-hydroxyisoquinoline-1,3-dione
(HID) scaffold featuring a crucial C-6 benzyl or biarylmethyl moiety.
The synthesis involved a recently reported metal-free direct benzylation
between tosylhydrazone and boronic acid, which allowed the generation
of structural diversity for the hydrophobic aromatic region. Biochemical
studies showed that the C-6 benzyl and biarylmethyl HID analogues,
previously unknown chemotypes, consistently inhibited HIV RT-associated
RNase H and polymerase with IC50s in low to submicromolar
range. The observed dual inhibitory activity remained uncompromised
against RT mutants resistant to non-nucleoside RT inhibitors (NNRTIs),
suggesting the involvement of binding site(s) other than the NNRTI
binding pocket. Intriguingly, these same compounds inhibited the polymerase,
but not the RNase H function of Moloney Murine Leukemia Virus (MoMLV)
RT and also inhibited Escherichia coli RNase H. Additional biochemical testing revealed a substantially
reduced level of inhibition against HIV integrase. Molecular docking
corroborates favorable binding of these analogues to the active site
of HIV RNase H. Finally, a number of these analogues also demonstrated
antiviral activity at low micromolar concentrations.
Targeting the clinically unvalidated reverse transcriptase (RT) associated ribonuclease H (RNase H) for human immunodeficiency virus (HIV) drug discovery generally entails chemotypes capable of chelating two divalent metal ions in the RNase H active site. The hydroxypyridone carboxylic acid scaffold has been implicated in inhibiting homologous HIV integrase (IN) and influenza endonuclease via metal chelation. We report herein the design, synthesis and biological evaluations of a novel variant of the hydroxypyridone carboxylic acid scaffold featuring a crucial N-1 benzyl or biarylmethyl moiety. Biochemical studies show that most analogues consistently inhibited HIV RT-associated RNase H in the low micromolar range in the absence of significant inhibition of RT polymerase or IN. One compound showed reasonable cell-based antiviral activity (EC50 = 10 µM). Docking and crystallographic studies corroborate favorable binding to the active site of HIV RNase H, providing a basis for the design of more potent analogues.
West Nile virus (WNV) and Dengue virus (DENV) are important human pathogens for which there are presently no vaccine or specific antivirals. We report herein a 5′-silylated nucleoside scaffold derived from 3′-azidothymidine (AZT) consistently and selectively inhibiting WNV and DENV at low micromolar concentrations. Further synthesis of various triazole bioisosteres demonstrated clear structure–activity relationships (SARs) in which the antiviral activity against WNV and DENV hinges largely on both the 5′-silyl group and the substituent of 3′-triazole or its bioisosteres. Particularly interesting is the 5′ silyl group which turns on the antiviral activity against WNV and DENV while abrogating the previously reported antiviral potency against human immunodeficiency virus (HIV-1). The antiviral activity was confirmed through a plaque assay where viral titer reduction was observed in the presence of selected compounds. Molecular modeling and competitive S-adenosyl-L-methionine (SAM) binding assay suggest that these compounds likely confer antiviral activity via binding to methyltransferase (MTase).
Tyrosyl-DNA phosphodiesterase 2 repairs irreversible topoisomerase II-mediated cleavage complexes generated by anticancer topoisomerase-targeted drugs and processes replication intermediates for picornaviruses (VPg unlinkase) and hepatitis B virus. There is currently no TDP2 inhibitor in clinical development. Here, we report a series of deazaflavin derivatives that selectively inhibit the human TDP2 enzyme in a competitive manner both with recombinant and native TDP2. We show that mouse, fish, and C. elegans TDP2 enzymes are highly resistant to the drugs and that key protein residues are responsible for drug resistance. Among them, human residues L313 and T296 confer high resistance when mutated to their mouse counterparts. Moreover, deazaflavin derivatives show potent synergy in combination with the topoisomerase II inhibitor etoposide in human prostate cancer DU145 cells and TDP2-dependent synergy in TK6 human lymphoblast and avian DT40 cells. Deazaflavin derivatives represent the first suitable platform for the development of potent and selective TDP2 inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.