Background
Twenty‐five percent of rectal adenocarcinoma patients achieve pathologic complete response (pCR) to neoadjuvant chemoradiation and could avoid proctectomy. However, pretreatment clinical or imaging markers are lacking in predicting response to chemoradiation. Radiomic texture features from MRI have recently been associated with therapeutic response in other cancers.
Purpose
To construct a radiomics texture model based on pretreatment MRI for identifying patients who will achieve pCR to neoadjuvant chemoradiation in rectal cancer, including validation across multiple scanners and sites.
Study Type
Retrospective.
Subjects
In all, 104 rectal cancer patients staged with MRI prior to long‐course chemoradiation followed by proctectomy; curated from three institutions.
Field Strength/Sequence
1.5T–3.0T, axial higher resolution T2‐weighted turbo spin echo sequence.
Assessment
Pathologic response was graded on postsurgical specimens. In total, 764 radiomic features were extracted from single‐slice sections of rectal tumors on processed pretreatment T2‐weighted MRI.
Statistical Tests
Three feature selection schemes were compared for identifying radiomic texture descriptors associated with pCR via a discovery cohort (one site, N = 60, cross‐validation). The top‐selected radiomic texture features were used to train and validate a random forest classifier model for pretreatment identification of pCR (two external sites, N = 44). Model performance was evaluated via area under the curve (AUC), accuracy, sensitivity, and specificity.
Results
Laws kernel responses and gradient organization features were most associated with pCR (P ≤ 0.01); as well as being commonly identified across all feature selection schemes. The radiomics model yielded a discovery AUC of 0.699 ± 0.076 and a hold‐out validation AUC of 0.712 with 70.5% accuracy (70.0% sensitivity, 70.6% specificity) in identifying pCR. Radiomic texture features were resilient to variations in magnetic field strength as well as being consistent between two different expert annotations. Univariate analysis revealed no significant associations of baseline clinicopathologic or MRI findings with pCR (P = 0.07–0.96).
Data Conclusion
Radiomic texture features from pretreatment MRIs may enable early identification of potential pCR to neoadjuvant chemoradiation, as well as generalize across sites.
Level of Evidence
3
Technical Efficacy Stage
2
(1) Background: The relatively poor expert restaging accuracy of MRI in rectal cancer after neoadjuvant chemoradiation may be due to the difficulties in visual assessment of residual tumor on post-treatment MRI. In order to capture underlying tissue alterations and morphologic changes in rectal structures occurring due to the treatment, we hypothesized that radiomics texture and shape descriptors of the rectal environment (e.g., wall, lumen) on post-chemoradiation T2-weighted (T2w) MRI may be associated with tumor regression after neoadjuvant chemoradiation therapy (nCRT). (2) Methods: A total of 94 rectal cancer patients were retrospectively identified from three collaborating institutions, for whom a 1.5 or 3T T2w MRI was available after nCRT and prior to surgical resection. The rectal wall and the lumen were annotated by an expert radiologist on all MRIs, based on which 191 texture descriptors and 198 shape descriptors were extracted for each patient. (3) Results: Top-ranked features associated with pathologic tumor-stage regression were identified via cross-validation on a discovery set (n = 52, 1 institution) and evaluated via discriminant analysis in hold-out validation (n = 42, 2 institutions). The best performing features for distinguishing low (ypT0-2) and high (ypT3–4) pathologic tumor stages after nCRT comprised directional gradient texture expression and morphologic shape differences in the entire rectal wall and lumen. Not only were these radiomic features found to be resilient to variations in magnetic field strength and expert segmentations, a quadratic discriminant model combining them yielded consistent performance across multiple institutions (hold-out AUC of 0.73). (4) Conclusions: Radiomic texture and shape descriptors of the rectal wall from post-treatment T2w MRIs may be associated with low and high pathologic tumor stage after neoadjuvant chemoradiation therapy and generalized across variations between scanners and institutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.