Five newly isolated lactic acid bacteria were identified as Weissella cibaria, Enterococcus faecium, and three different strains of Lactobacillus plantarum by 16S rRNA sequencing. Essential probiotic requirements of these isolates such as tolerance to phenol, low pH, high sodium chloride, and bile salt concentration were checked. Efficiency in adherence to mucin and hydrophobicity of the bacterial cell were also evaluated by in vitro studies. Antimicrobial activities against some pathogens were tried, and the sensitivity of these strains against 25 different antibiotics was also checked. Further studies revealed Weissella and Enterococcus as substantial producers of folic acid. Folate is involved as a cofactor in many metabolic reactions, and it has to be an essential component in the human diet. The folate level in the fermented samples was determined by microbiological assay using Lactobacillus casei NCIM 2364 as indicator strain. The three strains of L. plantarum showed significant inhibitory activity against various fungi that commonly contaminate food stuffs indicating their potential as a biopreservative of food material.
The history of fermented foods used by humans can be traced back to centuries. The medicinal as well as flavor enhancing properties of fermented foods are mainly due to the presence of bacteria known as probiotics. Probiotics aid in digestion and nutrient assimilation. These bacteria are also known for their beneficial effects for the immune system and health. Many of them produce antimicrobial bioactive molecules that make them effective biopreservatives and produce nutraceuticals to create functional foods with increased bioavailability of nutrients. Thus, these lactic acid bacteria have undeniable favorable effects. This review will summarize the health benefits of probiotic fermented foods.
In order to enhance folate levels in fermented foods, a folate producing probiotic lactic acid bacterium isolated from cow's milk and identified as Lactococcus lactis CM28 by 16S rRNA sequencing was used to fortify skim milk. Optimization of medium additives such as folate precursors, prebiotics and reducing agents along with suitable culture conditions enhanced folate levels in skim milk. Optimization resulted in a four fold increase in the extracellular folate (61.02 ± 1.3 μg/L) and after deconjugation the total folate detected was 129.53 ± 1.2 μg/L. The effect of refrigerated storage on the viability of L. lactis, pH, titratable acidity (TA) in terms of percentage lactic acid and finally on the stability of folate was determined. Only a slight variation in pH (4.74 ± 0.02 to 4.415 ± 0.007) and acidity (0.28 ± 0.028 to 0.48 ± 0.014 %) was noted during folate fermentation. During storage, only less than a log unit reduction was noted in the viable count of the probiotic after 15 days and about 90 % of the produced folate was retained in an active state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.