We tune the dimensionality of pancake-shaped strongly-interacting 6 Li Fermi gas clouds from twodimensional (2D) to quasi-2D, by controlling the ratio of the radial Fermi energy EF to the harmonic oscillator energy hνz in the tightly confined direction. In the 2D regime, where EF << hνz, the measured radio frequency resonance spectra are in agreement with 2D-BCS theory. In the quasi-2D regime, where EF ≃ hνz, the measured spectra deviate significantly from 2D-BCS theory. For both regimes, the measured cloud radii disagree with 2D-BCS mean field theory, but agree approximately with predictions using a free energy derived from the Bethe-Goldstone equation.
Weakly interacting Fermi gases exhibit rich collective dynamics in spin-dependent potentials, arising from correlations between spin degrees of freedom and conserved single atom energies, offering broad prospects for simulating many-body quantum systems by engineering energy-space "lattices," with controlled energy landscapes and site to site interactions. Using quantum degenerate clouds of 6 Li, confined in a spin-dependent harmonic potential, we measure complex, time-dependent spin-density profiles, varying on length scales much smaller than the cloud size. We show that a one-dimensional mean field model, without additional simplifying approximations, quantitatively predicts the observed fine structure. We measure the magnetic fields where the scattering lengths vanish for three different hyperfine state mixtures to provide new constraints on the collisional (Feshbach) resonance parameters.
This department welcomes brief communications reporting new demonstrations, laboratory equipment, techniques, or materials of interest to teachers of physics. Notes on new applications of older apparatus, measurements supplementing data supplied by manufacturers, information which, while not new, is not generally known, procurement information, and news about apparatus under development may be suitable for publication in this section. Neither the American Journal of Physics nor the Editors assume responsibility for the correctness of the information presented. Manuscripts should be submitted using the web-based system that can be accessed via the American Journal of Physics home page, http://ajp.dickinson.edu and will be forwarded to the ADN editor for consideration.
We study the pairing of fermions in a one-dimensional lattice of tunable double-well potentials using radio-frequency spectroscopy. The spectra reveal the coexistence of two types of atom pairs with different symmetries. Our measurements are in excellent quantitative agreement with a theoretical model, obtained by extending the Green's function method of Orso et al. [Phys. Rev. Lett. 95, 060402 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.060402] to a bichromatic 1D lattice with nonzero harmonic radial confinement. The predicted spectra comprise hundreds of discrete transitions, with symmetry-dependent initial state populations and transition strengths. Our work provides an understanding of the elementary pairing states in a superlattice, paving the way for new studies of strongly interacting many-body systems.
This department welcomes brief communications reporting new demonstrations, laboratory equipment, techniques, or materials of interest to teachers of physics. Notes on new applications of older apparatus, measurements supplementing data supplied by manufacturers, information which, while not new, is not generally known, procurement information, and news about apparatus under development may be suitable for publication in this section. Neither the American Journal of Physics nor the Editors assume responsibility for the correctness of the information presented. Manuscripts should be submitted using the web-based system that can be accessed via the American Journal of Physics home page, http://ajp.dickinson.edu and will be forwarded to the ADN editor for consideration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.