Regulation of cardiac muscle function is initiated by binding of Ca 2+ to troponin C (cTnC) which induces a series of structural changes in cTnC and other thin filament proteins. These structural changes are further modulated by crossbridge formation and fine tuned by phosphorylation of cTnI. The objective of the present study is to use a new Förster Resonance Energy Transfer-based structural marker to distinguish structural and kinetic effects of Ca 2+ binding, crossbridge interaction and protein kinase A phosphorylation of cTnI on the conformational changes of the cTnC N-domain. The FRET-based structural marker was generated by attaching AEDANS to one cysteine of a doublecysteine mutant cTnC(13C/51C) as a FRET donor and attaching DDPM to the other cysteine as the acceptor. The doubly labeled cTnC mutant was reconstituted into the thin filament by adding cTnI, cTnT, tropomyosin and actin. Changes in the distance between Cys13 and Cys51 induced by Ca 2+ binding/dissociation were determined by FRET-sensed Ca 2+ titration and stopped-flow studies, and time-resolved fluorescence measurements. The results showed that the presence of both Ca 2+ and strong binding of myosin head to actin was required to achieve a fully open structure of the cTnC N-domain in regulated thin filaments. Equilibrium and stopped-flow studies suggested that strongly bound myosin head significantly increased the Ca 2+ sensitivity and changed the kinetics of the structural transition of the cTnC N-domain. PKA phosphorylation of cTnI impacted the Ca 2+ sensitivity and kinetics of the structural transition of the cTnC N-domain but showed no global structural effect on cTnC opening. These results provide an insight into the modulation mechanism of strong crossbridge and cTnI phosphorylation in cardiac thin filament activation/relaxation processes. Keywordsphosphorylation; cardiac troponin C; thin filament; FRET; Ca 2+ activation; kinetics Force development during cardiac muscle contraction is dependent upon the strong interactions between myosin and the actin filament. These interactions are governed by the regulatory
Background:The structure of activated ezrin is not known. Results: We have determined the conformation of activated ezrin upon binding to PIP 2 and to F-actin. Conclusion: Activated ezrin forms more extensive contacts with F-actin than generally depicted. Significance: This study provides new insight into the mechanisms by which ezrin assembles signaling complexes at the membrane-cytoskeleton interface.
Cardiac thin filament deactivation is initiated by Ca2؉ dissociation from troponin C (cTnC), followed by multiple structural changes of thin filament proteins. These structural transitions are the molecular basis underlying the thin filament regulation of cardiac relaxation, but the detailed mechanism remains elusive. In this study Förster resonance energy transfer (FRET) was used to investigate the dynamics and kinetics of the Ca 2؉ -induced conformational changes of the cardiac thin filaments, specifically the closing of the cTnC N-domain, the cTnC-cTnI (troponin I) interaction, and the cTnI-actin interaction. The cTnC N-domain conformational change was examined by monitoring FRET between a donor (AEDANS) attached to one cysteine residue and an acceptor (DDPM) attached the other cysteine of the mutant cTnC(L13C/N51C). The cTnC-cTnI interaction was investigated by monitoring the distance changes from residue 89 of cTnC to residues 151 and 167 of cTnI, respectively. The cTnI-actin interaction was investigated by monitoring the distance changes from residues 151 and 167 of cTnI to residue 374 of actin. FRET Ca 2؉ titrations and stopped-flow kinetic measurements show that different thin filament structural transitions have different Ca 2؉ sensitivities and Ca 2؉ dissociation-induced kinetics. The observed structural transitions involving the regulatory region and the mobile domain of cTnI occurred at fast kinetic rates, whereas the kinetics of the structural transitions involving the cTnI inhibitory region was slow. Our results suggest that the thin filament deactivation upon Ca 2؉ dissociation is a two-step process. One step involves rapid binding of the mobile domain of cTnI to actin, which is kinetically coupled with the conformational change of the N-domain of cTnC and the dissociation of the regulatory region of cTnI from cTnC. The other step involves switching the inhibitory region of cTnI from interacting with cTnC to interacting with actin. The latter processes may play a key role in regulating cross-bridge kinetics.Cardiac muscle utilizes troponin to sense the concentration changes of myoplasmic Ca 2ϩ and translate the transient Ca 2ϩsignal into a cascade of events within the thin filament that ultimately leads to force generation or relaxation. The cardiac thin filament is composed of the heterotrimeric troponin complex and tropomyosin bound to the double helical actin filament (1, 2). The cardiac troponin is formed by three subunits: troponin C (cTnC), 2 troponin I (cTnI), and troponin T (cTnT). The subunit cTnC is the Ca 2ϩ -binding protein, cTnI binds actin and inhibits actomyosin ATPase in relaxed muscle, and cTnT anchors the troponin complex on the actin filament. A prominent feature of cardiac muscle regulation is the Ca 2ϩ -dependent dynamic interactions among the thin filament proteins and the multiple structural transitions at the interface between troponin and the actin filament. These structural transitions include opening/closing of the N-domain of cTnC (3, 4), changes in conformation of both...
Cardiac troponin (cTn) is the Ca2+-sensitive molecular switch that controls cardiac muscle activation and relaxation. However, the molecular detail of the switching mechanism and how the Ca2+ signal received at cardiac troponin C (cTnC) is communicated to cardiac troponin I (cTnI) are still elusive. To unravel the structural details of troponin switching, we performed ensemble Förster resonance energy transfer (FRET) measurements and molecular dynamic (MD) simulations of the cardiac troponin core domain complex. The distance distributions of forty five inter-residue pairs were obtained under Ca2+-free and saturating Ca2+ conditions from time-resolved FRET measurements. These distances were incorporated as restraints during the MD simulations of the cardiac troponin core domain. Compared to the Ca2+-saturated structure, the absence of regulatory Ca2+ perturbed the cTnC N-domain hydrophobic pocket which assumed a closed conformation. This event partially unfolded the cTnI regulatory region/switch. The absence of Ca2+, induced flexibility to the D/E linker and the cTnI inhibitory region, and rotated the cTnC N-domain with respect to rest of the troponin core domain. In the presence of saturating Ca2+ the above said phenomenon were absent. We postulate that the secondary structure perturbations experienced by the cTnI regulatory region held within the cTnC N-domain hydrophobic pocket, coupled with the rotation of the cTnC N-domain would control the cTnI mobile domain interaction with actin. Concomitantly the rotation of the cTnC N-domain and perturbation of the D/E linker rigidity would control the cTnI inhibitory region interaction with actin to effect muscle relaxation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.