Chronux is an open-source software package developed for the analysis of neural data. The current version of Chronux includes software for signal processing of neural time-series data including several specialized mini-packages for spike sorting, local regression, audio segmentation, and other data-analysis tasks typically encountered by a neuroscientist. Chronux is freely available along with user tutorials, sample data, and extensive documentation from http://chronux.org/.
Attention enhances the encoding and retrieval of olfactory and visuospatial representations by modulating place field stability, firing rate, and neuronal synchronization of pyramidal cells in the hippocampus.
Synchronized spontaneous firing among retinal ganglion cells (RGCs), on timescales faster than visual responses, has been reported in many studies. Two candidate mechanisms of synchronized firing include direct coupling and shared noisy inputs. In neighboring parasol cells of primate retina, which exhibit rapid synchronized firing that has been studied extensively, recent experimental work indicates that direct electrical or synaptic coupling is weak, but shared synaptic input in the absence of modulated stimuli is strong. However, previous modeling efforts have not accounted for this aspect of firing in the parasol cell population. Here we develop a new model that incorporates the effects of common noise, and apply it to analyze the light responses and synchronized firing of a large, densely-sampled network of over 250 simultaneously recorded parasol cells. We use a generalized linear model in which the spike rate in each cell is determined by the linear combination of the spatio-temporally filtered visual input, the temporally filtered prior spikes of that cell, and unobserved sources representing common noise. The model accurately captures the statistical structure of the spike trains and the encoding of the visual stimulus, without the direct coupling assumption present in previous modeling work. Finally, we examined the problem of decoding the visual stimulus from the spike train given the estimated parameters. The common-noise model produces Bayesian decoding performance as accurate as that of a model with direct coupling, but with significantly more robustness to spike timing perturbations.
Recent developments in multi-electrode recordings enable the simultaneous measurement of the spiking activity of many neurons. Analysis of such multineuronal data is one of the key challenge in computational neuroscience today. In this work, we develop a multivariate point-process model in which the observed activity of a network of neurons depends on three terms: (1) the experimentally-controlled stimulus; (2) the spiking history of the observed neurons; and (3) a hidden term that corresponds, for example, to common input from an unobserved population of neurons that is presynaptic to two or more cells in the observed population. We consider two models for the network firing-rates, one of which is computationally and analytically tractable but can lead to unrealistically high firing-rates, while the other with reasonable firing-rates imposes a greater computational burden. We develop an expectation-maximization algorithm for fitting the parameters of both the models. For the analytically tractable model the expectation step is based on a continuous-time implementation of the extended Kalman smoother, and the maximization step involves two concave maximization problems which may be solved in parallel. The other model that we consider necessitates the use of Monte Carlo methods for the expectation as well as maximization step. We discuss the trade-off involved in choosing between the two models and the associated methods. The techniques developed allow us to solve a variety of inference problems in a straightforward, computationally efficient fashion; for example, we may use the model to predict network activity given an arbitrary stimulus, infer a neuron's ring rate given the stimulus and the activity of the other observed neurons, and perform optimal stimulus decoding and prediction. We present several detailed simulation studies which explore the strengths and limitations of our approach.
The Kalman filter has been proposed as a model to decode neural activity measured from the motor cortex in order to obtain real-time estimates of hand motion in behavioral neurophysiological experiments. However, currently used linear state-space models underlying the Kalman filter do not take into account other behavioral states such as muscular activity or the subject’s level of attention, which are often unobservable during experiments but may play important roles in characterizing neural controlled hand movement. To address this issue, we depict these unknown states as one multidimensional hidden state in the linear state-space framework. This new model assumes that the observed neural firing rate is directly related to this hidden state. The dynamics of the hand state are also allowed to impact the dynamics of the hidden state, and vice versa. The parameters in the model can be identified by a conventional expectation-maximization algorithm. Since this model still uses the linear Gaussian framework, hand-state decoding can be performed by the efficient Kalman filter algorithm. Experimental results show that this new model provides a more appropriate representation of the neural data and generates more accurate decoding. Furthermore, we have used recently developed computationally efficient methods by incorporating a priori information of the targets of the reaching movement. Our results show that the hidden-state model with target-conditioning further improves decoding accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.