The Web offers a corpus of over 100 million tables [6], but the meaning of each table is rarely explicit from the table itself. Header rows exist in few cases and even when they do, the attribute names are typically useless. We describe a system that attempts to recover the semantics of tables by enriching the table with additional annotations. Our annotations facilitate operations such as searching for tables and finding related tables.To recover semantics of tables, we leverage a database of class labels and relationships automatically extracted from the Web. The database of classes and relationships has very wide coverage, but is also noisy. We attach a class label to a column if a sufficient number of the values in the column are identified with that label in the database of class labels, and analogously for binary relationships. We describe a formal model for reasoning about when we have seen sufficient evidence for a label, and show that it performs substantially better than a simple majority scheme. We describe a set of experiments that illustrate the utility of the recovered semantics for table search and show that it performs substantially better than previous approaches. In addition, we characterize what fraction of tables on the Web can be annotated using our approach.
The Deep Web, i.e., content hidden behind HTML forms, has long been acknowledged as a significant gap in search engine coverage. Since it represents a large portion of the structured data on the Web, accessing Deep-Web content has been a long-standing challenge for the database community. This paper describes a system for surfacing Deep-Web content, i.e., pre-computing submissions for each HTML form and adding the resulting HTML pages into a search engine index. The results of our surfacing have been incorporated into the Google search engine and today drive more than a thousand queries per second to Deep-Web content. Surfacing the Deep Web poses several challenges. First, our goal is to index the content behind many millions of HTML forms that span many languages and hundreds of domains. This necessitates an approach that is completely automatic, highly scalable, and very efficient. Second, a large number of forms have text inputs and require valid inputs values to be submitted. We present an algorithm for selecting input values for text search inputs that accept keywords and an algorithm for identifying inputs which accept only values of a specific type. Third, HTML forms often have more than one input and hence a naive strategy of enumerating the entire Cartesian product of all possible inputs can result in a very large number of URLs being generated. We present an algorithm that efficiently navigates the search space of possible input combinations to identify only those that generate URLs suitable for inclusion into our web search index. We present an extensive experimental evaluation validating the effectiveness of our algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.